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The El Niño Southern Oscillation (ENSO) is a coupled ocean and atmospheric phenomenon that
has vast implications for weather and climate globally. Responsible for droughts and heavy flooding
events, ENSO variability is important to the issue of climate change and its societal impacts. Our
ability to understand this climate phenomenon and predict El Niño is crucial to climate prediction
on regional and global scales. While comprehensive climate models have made significant progress
in El Niño prediction during the last decade or so, the reliability of their forecast remains relatively
low even on seasonal timescales. For example, predictions made today for sea surface temperatures
in the eastern equatorial Pacific with a 6-month lag by different models may differ by 2oC.

In this work, we explore a recently developed simple dynamical model of ENSO for prediction (or
more precisely for hindcasting past El Niño events). The model is derived assuming that El Niño
is a relatively low-frequency phenomenon as compared to fast timescales associated with equatorial
wave propagation. As the first step, we have introduced nonlinearities to the governing equations
of the model and examined their effects. Next, we use tuning parameters to strengthen the skill of
the model. For example, α, the wind stress curl parameter, controls the extent of wind anomalies
near the equator. The developed model exhibits reasonable predictive skill as seen in the correlation
with the observations and its RMS error.

I. INTRODUCTION

The El Niño-Southern Oscillation (ENSO) is defined
by warming and cooling patterns in surface waters in the
eastern tropical pacific ocean. The southern oscillation
refers to an atmospheric contribution due to surface pres-
sure gradients in the western tropical pacific. El Niño is
characterized by a flow of warm water on the eastern side
of the pacific due to weakened zonal winds which flatten
the thermocline and consequently cause warm sea sur-
face temperature (SST) anomalies. La Niña, instead, is
characterized by strong zonal winds causing storage of
warm water in the west, steepening the thermocline and
allowing cold water to surface in the east. The important
component of this phenomenon is the meridional (along
longitude) mass distribution. Typical periods of El Niño
range from 3-7 years.

Although variations in SST are localized in the equa-
torial pacific, ENSO events have implications on global
climate. El Niño events have caused elevated rainfall in
the Southern U.S. and Peru. Droughts in the Western
Pacific and brush fires in Australia are other examples of
ENSO’s effects. In El Niño years, winter temperatures
are warmer than normal in the northern central states
and colder than usual in the Southeast and Southwest
Biological effects on food chain are also observed, warm
El Niño events can cause decline in productivity even
reaching commercial fisheries. Although La Niña events
are less intense in terms of SST anomalies, global impacts
are still notable. In winter, for example, temperatures are
relatively warmer in the Southeast and colder on average
in the Northwest of the U.S. during a La Niña.

A climate feedback is a mechanism which amplifies
(positive) or damps (negative) the effects of a change in

FIG. 1: Averaged temperature anomalies in oC in the equa-
torial pacific. Black quivers indicate intensity and direction
of winds. An El Niño (La Niña) event is characterized by a
+.5oC (-.5oC) sea surface temperature anomaly. Strong El
Niño events have reached 4oC while La Niña events are gen-
erally weaker and are maximized at approximately -2oC.

climate forcing. Three climate feedbacks are notable in
ENSO dynamics: thermocline, upwelling, and zonal ad-
vection. To illustrate these feedbacks Figure 2 assumes
a warm SST anomaly which induces wind-stress anoma-
lies. The thermocline feedback occurs when wind stress
anomalies vary the slope of the thermocline causing an
increase in the SST anomaly. Here we assume constant
background upwelling. If, instead, we assume a back-
ground stably stratified temperature field the upwelling
feedback leads to changes in upwelling which also increase
the SST anomaly. The third feedback, zonal advection,
occurs when the wind anomaly causes stronger zonal ad-
vection, under conditions where the annual-mean zonal
SST gradient is negative, will cause an increase in the
SST anomaly. [1]

Low frequency processes are integral to the under-
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FIG. 2: A diagram of feedbacks to a warm anomaly associ-
ated with El Niño. Upwelling is reduced and the thermocline
flattens.

standing of ENSO events. Coupling between low fre-
quency wind variations and the ocean’s response is fun-
damental to the dynamics of ENSO. Because it is a rela-
tively slow process, we consider ENSO’s small frequency
of oscillation in comparison with the faster timescale of
Kelvin and Rossby wave propagation. Kelvin waves have
characteristic periods of 30-90 days. SST sensitivity to
increases in equatorial upwelling or the slope of the ther-
mocline is on the order of a few months. We therefore
integrate the high frequency processes hoping to under-
stand large scale net adjustments of the ocean. [2]

Ocean memory in other approximations, such as the
original fast-wave limit [3, 4], neglect the adjustment time
of the ocean thermocline, while in this study we account
for it. By incorporating ocean memory into this work
we encompass the dynamics of the ocean recharge and
discharge oscillator.

FIG. 3: Current operational models forecasting ENSO. Both
dynamical and statistical models are shown. The variance
in the predictions of these models shows the need for more
rigorous models of ENSO dynamics.

The motivation for this work comes from the large vari-
ability (Fig. 3) in operational models at present. We pro-
pose a relatively efficient model that in one equation for
temperature evolution can encapsulate the fundamental
dynamics of ENSO.

II. METHODOLOGY

To represent ENSO we use the long-wave approxima-
tion on the equatorial β-plane and begin with the linear
reduced-gravity shallow-water equations.[5]

ut + g′hz − βyv = τ/ρD − εmu (1)
g′hy + βyu = 0 (2)

ht +H(ux + vy) = −εmh (3)

u=u(x,y,t) [zonal current]
v=v(x,y,t) [meridional current]
H - the mean depth of the thermocline
h=h(x,y,t) - thermocline depth anomalies
τ=τ(x,y,t) - the zonal components of the wind stress
ρ - mean water density, (∆ρ - the difference between the
density of the upper (warm) layer and the density of the
deep lower layer)
g=g(∆ρ/ρ) - the reduced gravity
D is the nominal depth characterizing the effect of
surface winds on the ocean thermocline (frequently it is
assumed that D=H).

Simple Rayleigh friction in the momentum equations
and a linear parameterization of water entrainment at
the base of the mixed layer in the continuity equation
are incorporated in εm, the oceanic damping rate.[2] We
non-dimensionalize as follows:

x− > xL, u− > uck, v− > vckLR
L

,

h− > hH, x− > xL, y− > yLR

t− > tLR
ck

, τ− > τρc2kD

L
, εm− >

εmck
LR

L - basin width LR - equatorial Rossby radius of defor-
mation

LR =
√
c

β
, c =

√
(gH) (4)

is the phase velocity of linear baroclinic Kelvin waves,
and time is scaled using the basin crossing time for the
Kelvin wave,

Tk =
LR
ck

(5)

Some typical values for the tropical Pacific ocean are
(∆ρ/ρ=0.006; L=150o, H=120m; D=80m;

ck = 2.7m/s, LR = 340km;
Tk = 2.4months; εm = 2.01/years

The primary data used in this model is NINO3
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temperature anomalies from the Kaplan dataset
(http://iridl.ldeo.columbia.edu/SOURCES/.KAPLAN/
). Following the method of Fedorov (2010) [2] we arrive
at the sea surface temperature equation

d

dt
Te + (εw + εT )Te = εw

he
∆

(6)

Another way of writing this relation is

d

dt
Te + aTe = b

∫
e−εmt

′
I(α, t′)Te(t− t′)dt′ (7)

where

a = εw + εT − (r +
q
√
xc

)εh; b =
qεh
π
√
xc

(8)

Here, Te is the sea surface temperature in the eastern
equatorial pacific, εm is the ocean damping timescale.
he describes the depth of the thermocline in the eastern
equatorial pacific. εT is thermal damping and xc is the
location of the maximum of wind stress anomalies.The
terms r and q are coefficients for different lengths of the
averaging integral in the eastern Pacific.

εh = τo
εw
∆

= γo
weτo
d∆

(9)

This parameter describes the coupling between SST
anomalies and the thermocline. we is the vertical up-
welling velocity. Also defined is the function I in the
convolution term,

I(α̂, t) = −α̂
∫ 1

0

e−α̂ts
√

s

1− s
ds (10)
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FIG. 4: The blue curve is the NINO3 index and the green
curve represents filtered NINO3 data. To optimize our model
we remove high frequencies from the input using a low-pass
filter that removes periods shorter than 2 years.

The convolution on the right hand side of equation 7
describes the delayed thermocline response to variations

in sea surface temperature (Te). We do not account for
Rossby or Kelvin waves as they are high frequency events
in this context. Instead, we incorporate ocean memory
that will have a net effect on the the current temperature.
We choose 10-12 years of memory as it incorporates at
least 1 ENSO event and most likely 2-3 recalling that the
period of ENSO is between 3-7 years. Because our model
is low frequency, we use a filtered version of the NINO3
data which removes high frequencies.

We will begin with a simple model that produces a
damped oscillation of approximately 3 years (periodicity
of ENSO).
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FIG. 5: The first ten years of the model are a convolution for
ocean memory. In this figure, we use a constant temperature
for illustrative purposes. At each NINO3 temperature point
we output a damped oscillatory prediction like this one.

Four parameters are varied within physical bounds to
improve the predictive skill of our model. Wind stress
(τ0), wind stress curl (α), the nondimensional verti-
cal length scale over which the subsurface temperature
changes by 1oC (∆), and the ocean damping rate (εm)
are all varied relative to one another for the optimal set
of parameters. High values of alpha increase the fre-
quency of the model while lower values of delta increase
the amplitude. Physically, increasing α means that wind
anomalies are confined closer to the equator. A higher
ocean damping rate, εm, will give stronger decay rates
and longer oscillation periods. ∆, gives a measure of the
thickness of the tropical thermocline.

We also wrote a second model based on the coupled
system of equations:

d

dt
Te + aTe = bW (11)

d

dt
W = −cTe (12)

a = εw + εT − (r +
q
√
xc

)εh; b =
qεh
π
√
xc

; c =
πα

2xc
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In this case the left side of equation 11 is an estimate
of the integral given on the right side of equation 7. By
approximating the ocean response term, the system sim-
plifies and we can impose initial conditions in two ways.
First, we can set the initial temperature and an approx-
imate slope of the derivative using 2 or 3 points prior
to the initial time. Secondly, we can impose, again, an
initial temperature and an initial W.

The final method that we used to improve the skill of
our model was by adding nonlinearities to the governing
equations. This process will be more rigorously addressed
in the future work section. The idea behind this method
is to introduce nonlinearities to better represent certain
relationships. ENSO, inherently, is a nonlinear process
as La Niña events are uniformly weaker than El Niño
events in intensity. An example of a simple quadratic
nonlinearity is given

d

dt
Te = (...) + kT 2

e (13)

where k is a coefficient that we determine empirically.
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FIG. 6: In this plot we show for an arbitrary time step, we
can add a quadratic nonlinearity to our temperature evolution
equation and capture the asymmetry that exists between El
Niño and La Niña. Here, the red curve has a nonlinearity and
the blue curve does not.

By creating individual predictions from every NINO3
temperature point, we can create a hindcast of these pre-
dictions. We choose a specific length of prediction, e.g.
6 months, and choose the 6 month forecast from each
prediction in the hindcast. We then have an array of 6
month predictions which we can analyze in relation to
the NINO3 data at the corresponding time.

III. RESULTS

In this work we tried many different model variations
with a range of results. Fig. 8 is a table summarizing
these results. We define the skill of the model relative

0 20 40 60 80 100 120 140 160 180 200

−1

−0.5

0

0.5

1

1.5

Time, months

Te
m

pe
ra

tu
re

, o C

FIG. 7: The black points are NINO3 temperature points. The
blue lines are predictions taken from each NINO3 temperature
point. Creating a time series of these predictions, we can take
the 6 month points (in red) and create a forecast 6 months into
the future. Since this is a hindcast, we can then compare this
6 month forecast with the NINO3 index at the corresponding
time.

to values of persistence. Persistence, in this sense, refers
to the persistence of an initial anomaly moving forward
in time. We consider the failures of the model just as
valuable as the successes which we have quantified in the
table below. What we have found, empirically, is that

 

Model Correlation at 6 

months 

2 ODE’s ~.45 

Convolution ~.55 

Filtered Convolution ~.85 

Persistence (unfiltered) .38 

Persistence (filtered) .66 

 
 

FIG. 8: This table gives approximate results for each of our
model runs. We choose to pursue the filtered convolution
method, which has correlations at 6 months as high as .85.

we need an input that is low-frequency in order for the
model to output strongly correlated forecasts. To imple-
ment this, we ran a low-pass filter on the NINO3 data to
eliminate periods smaller than 2 years (Fig. 4). For a 6
month forecast we find significant predictive skill.

We are the only low-frequency model at present mak-
ing it complicated to compare our results directly to other
models. Instead, we quantify our skill by a correlation
coefficient and an RMS error so as to account for shape
and amplitude matching. We compare our results to per-
sistence, a standard comparison in model diagnostics.

IV. CONCLUSIONS AND FUTURE WORK

In conclusion, we have developed a simple model that
is computationally efficient and encapsulates the funda-
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FIG. 9: For different lead times we create hindcasts to show
the predictive skill of our model. Even at a 1 year prediction
our model still exhibits notable skill.
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FIG. 10: This is a closer view of one of the El Niño events
that we are forecasting at a 6 month lead. We are able to
match shape and amplitude of the anomaly.

mental dynamics of ENSO. We are able to make 1 year
forecasts that are significantly better than persistence
and that may fall well below the typical variance between
operational models and actual data.

There are two main areas of future work that I would
like to propose. First, our model is efficient and therefore
it is possible to give a more careful treatment to the ocean
and atmospheric physics. By this I mean that we have
made approximations in our governing equations and pa-
rameterizations that we may be able to more rigorously
represent using, for example, nonlinearities.

The goal of this work is to develop an operational
model which would mean reworking the input so that

it would run with unfiltered NINO3 data. In order to
do this we are in the process of developing a back filter,
or a mechanism for filtering the input NINO3 data that
does not use future time. At this stage we are exploring
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FIG. 11: The blue line represents persistence and our model is
in green. For a one year forecast we are well above persistence.
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FIG. 12: The black dotted line represents the standard devia-
tion of the NINO3 index. Blue is again persistence and green
is our model plotted over a 1 year prediction. Our RMS er-
ror is well below persistence and simultaneously below the
standard deviation as well.

two options. One, to run a low-pass filter that already
exists in matlab on only previous times. The limitation
with this is that filters are known to have trouble at the
edges of data sets which may influence our convolution
significantly. And secondly, we are trying to develop a
theoretical approach to rework the convolution term so
that it will filter the data in the integral. This work is in
progress and seems promising.
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