david Evans

David Evans

Professor of Earth & Planetary Sciences
Earth & Planetary Sciences

Bio

Research summary:  Continental reconstructions; supercontinents; paleomagnetism; characteristics of the Precambrian geomagnetic field.  Implications for the long-term Earth evolution of geodynamics, tectonics, climate change, and life.  Field- and laboratory-based research methods in paleomagnetism.  Past and current projects in Angola, Australia, Botswana, Brazil, Canada, China, Finland, Mexico, Mongolia, Morocco, Namibia, Russia, South Africa, and the United States.

Education

B.S. 1992 Yale University (advisers: Jay Ague, Mark Brandon).  Thesis:  Geospeedometry and the metamorphic history of the Chiwaukum Schist, Washington, USA

M.S. 1994, PhD. 1998 Caltech (adviser: Joe Kirschvink).  Thesis:  I. Neoproterozoic-Paleozoic supercontinental tectonics and true polar wander;  II. Temporal and spatial distributions of Proterozoic glaciations

Courses

Current

EPS 110 / 111L:  Dynamic Earth / Laboratory & Field

EPS 370:  Regional Perspectives on Global Geoscience

Previous (all G&G designations renamed EPS)

EPS 010:  Earth, Resources, Energy, and the Environment

EPS 205:  Natural Resources and their Sustainability

EPS 212:  Global Tectonics

EPS 260:  Plate Tectonics

EPS 333:  Paleogeography

EPS 744:  Seminar on Earth’s Magnetic Field

EPS 777:  Early Life

Yale Paleomagnetic Lab Visitors

If you, or one of your students, would like to visit the Yale paleomagnetic laboratory for directional or rockmagnetic data acquisition for short durations, or as long as one year, please contact David Evans.

Last updated: June 2024

2020       Paul Myrow, Colorado College.  Topic: Reconnaissance paleomagnetism of Proterozoic-Paleozoic sedimentary rocks in East and Southeast Asia.

2015-19     Johanna Salminen, Univ. of Helsinki.  Topic: Paleomagnetism of Proterozoic rocks of the Congo craton in Angola and Namibia (numerous visits).

2018       Sarah Slotznick and Hervé Wabo.  Topic: Paleomagnetism of Paleoproterozoic mafic rocks in the eastern Kaapvaal craton, South Africa.

2017       Ashley Gumsley, Lund University, Sweden.  Topic: Paleomagnetism and U-Pb geochronology of mafic dykes in the Pilbara craton, Western Australia.

2016       Joshua Feinberg, Univ. of Minnesota.  Topic: Collaborations on Precambrian paleomagnetism and Holocene paleosecular variation (with the Yale Archeomagnetic Laboratory).

2015       Sergei Pisarevsky, Curtin University.  Topic: Paleomagnetism of Proterozoic rocks from Western Australia and East Antarctica.

2013       Lauri Pesonen and Toni Veikkolainen, University of Helsinki.  Topic: Developing the PaleoMagia database.

2011        Roman Veselovskiy, Inst. of Physics of the Earth, Russian Academy of Science.  Topic: Anisotropy of magnetic susceptibility of Siberian samples.

2011        Athena Eyster, Harvard University.  Topic: Paleomagnetic study of mid-Neoproterozoic volcanic rocks, northwest Canada.

2010        Richard Hanson, Texas Christian University.  Topic: Paleomagnetism of the Sinclair region, Kalahari craton, Namibia.

2007-10   Nick Swanson-Hysell, Princeton University.  Topic: Paleomagnetic studies of 1.1-Ga Mamainse Point volcanic rocks, mid-continent rift of Laurentia, and the Bitter Springs Formation in central Australia.

2007        Ethan Hyland, Carleton College.  Topic: Magnetostratigraphy of the Eocene-Oligocene transition in the Sgaglia Cinerea formation at Monte Cagnero, Italy.

2023-24   Thales Pescarini(student of Ricardo Trindade), Univ. São Paulo, Brazil.  Paleomagnetism of Ediacaran-Cambrian sedimentary rocks in SW Gondwanaland.

2023-24   Yanan Zhou, Northwest Univ., Xi’an.  Topic: Paleomagnetism of the Olongbuluke Terrane, western China.

2019-20   Chao Wang, Northwest Univ., Xi’an.  Topic: Tectonic assembly of China.

2018-19   Xianqing Jing, Capital Normal Univ., Beijing.  Topic: Paleomagnetism of South China’s Tonian interval.

2018        Brendan Murphy, St. Francis Xavier Univ.  Topic: Fulbright Fellowship on supercontinents.

2013-15   Bin Wen (as a student of Yongxiang Li), Nanjing University.  Topic: Stratigraphy, tectonics, and paleomagnetism of Neoproterozoic-Cambrian rocks in the Aksu-Wushi region, Tarim craton, western China.

2010        Zheng-Xiang Li, Curtin University.  Topic: Fulbright Fellowship on supercontinents.

2011-12   Haiyan Li, China University of Geosciences Beijing.  Topic: Paleomagnetic and rock-magnetic studies of Ediacaran-Paleozoic sedimentary rocks from South China.

2008        Vladimir Pavlov, Inst. of Physics of the Earth, Russian Academy of Science.  Topic: Paleomagnetism of Riphean and Cambrian sedimentary rocks of the Anabar Shield, Siberia.

2007-08   Edgard Catelani (student of Ricardo Trindade), Univ. São Paulo, Brazil.  Topic: Paleomagnetic and paleointensity studies of Proterozoic mafic dykes in coastal Bahia.

2006-07   Shihong Zhang, China University of Geosciences Beijing.  Topic: Paleomagnetic study of the ca. 640-Ma Nantuo Formation, South China.

Students and Postdocs

Phil McCausland (2023- ).  Topic: Paleomagnetism of North American continental evolution and accretion.


 

Jikai Ding (2020-2023), currently researcher at China University of Geosciences Beijing.  Topic: Paleomagnetism of Proterozoic supercratons and supercontinents.

Bin Wen (2016-2019), currently on faculty at China University of Geosciences Wuhan.  Topic: Paleomagnetism and tectonic history of Tarim and Alxa terranes, central Asia.

Johanna Salminen (2010-12), currently on faculty at University of Helsinki, Finland.  Topic: Paleomagnetism of Mesoproterozoic mafic dykes in Finland (Baltica) and the São Francisco/Congo craton (Brazil/Angola).

Michiel de Kock (2007-08), currently on faculty at University of Johannesburg, South Africa.  Topic: Paleomagnetic study of the Agouron scientific drillcores and outcrops of the Ventersdorp and Transvaal successions, for refinement of the Kaapvaal craton apparent polar wander path; and a global review of “hard” hematite iron deposits from paleomagnetic constraints.

Aleksey Smirnov (2005-07), currently on faculty at Michigan Technical University.  Topic: Intensity and field morphology of the Archean-Paleoproterozoic geomagnetic field, and refinement of the Neoarchean apparent polar wander path for the Pilbara craton, Western Australia.

Alexie Millikin, PhD expected 2024.  Topic: Stratigraphic, geochronologic, geochemical, and paleomagnetic investigations of Proterozoic rocks in Svalbard, South Africa, and Namibia.

James Pierce, PhD expected 2026.  Topic: Paleogeography and geodynamo evolution through the Ediacaran-Cambrian transition.

Jonathan Wolf, PhD 2024 (minor discourse).  Topic: Testing alternative supercontinent cycle models with paleolatitude distributions of global subduction zones.

Dana Polomski, BS 2024.  Topic: Paleomagnetism of the Tsumis Group in the Kalahari foreland of the Damara orogen, Namibia.

Eliza Poggi, MS 2023.  Topic: Are Ediacaran Carbonates Reliable for Paleomagnetic Analysis? Two Case Studies from Utah, USA and Ouarzazate, Morocco. 

Zheng Gong, PhD 2021.  Topic: Precambrian global tectonics, the geodynamo, and environmental change.

Frederic Dufour (McGill University; primary adviser Prof. Galen Halverson).  Topic: Paleomagnetism of Meso-Neoproterozoic mafic intrusions in the Fury-Hecla, Borden, and Thule Basins, Laurentia.

Chiara Chung-Halpern, BS 2021.  Topic: Reconnaissance paleomagnetism of the Northern Rehoboth Basement Inlier, Namibia.

Vuong Mai, BS 2021.  Topic: Paleomagnetic regional survey of late magmatic & sedimentary rocks of the Southern Rehoboth Basement Inlier.

Emily Stewart, PhD 2020.  Topic (minor discourse): Further paleomagnetic study of the Keilberg cap carbonate, Etoto syncline, Namibia.

Devon Cole, PhD  2019.  Topic (minor discourse): Testing Vaalbara supercraton reconstructions with integrated paleomagnetism and U-Pb geochronology of mafic dykes from Pilbara, Western Australia.

Seamus Houlihan, BS  2019.  Topic: Paleomagnetism of Tonian dykes and lavas in the Welwitschia Inlier, northern Namibia.

Terry Isson, PhD  2019.  Topic (minor discourse): Paleomagnetic and rock-magnetic investigation of an undeformed and unmetamorphosed section of Ediacaran postglacial cap carbonate, northernmost Namibia.

Ross Anderson, PhD  2017.  Topic (minor discourse): Paleomagnetism of Ediacaran strata in the Bonavista area of Newfoundland’s Avalon Zone.

Colton Lynner, PhD  2016.  Topic (minor discourse): A paleomagnetic baked-contact test on Neoproterozoic-Cambrian mafic dykes in southern Namibia.

Chris Thissen, PhD  2016.  Topic (minor discourse): Detailed paleomagnetic reinvestigation of the Scaglia Rossa formation, Italy, and implications for Late Cretaceous true polar wander.

Olivia Walker, BS  2016.  Topic: Refined paleomagnetism of Mesoproterozoic rocks in the Kunene region, southern Congo craton, Namibia.

XinXin Xu, BS/MS  2016.  Topic: Paleomagnetism of the Mesoproterozoic Barby Formation, southern Namibia.

Taylor Kilian, PhD 2015.  Topic: Paleomagnetism of Proterozoic dikes in the Wyoming craton: Implications for the assembly of Laurentia.

Tierney Larson, BS 2015.  Topic: Meso-Neoproterozoic paleomagnetism of the southern Congo craton, Tanzania and Namibia.

Joe Panzik, PhD 2015.  Thesis: Assessing Earth’s Proterozoic geomagnetic field geometry and paleogeography using theoretical and analytical techniques.

Jenna Hessert, BS 2014.  Thesis: Paleomagnetic baked-contact tests in the Mesoproterozoic Sinclair region of Namibia.

Ross Mitchell, PhD 2013.  Thesis: Supercontinents, true polar wander, and paleogeography of the Slave craton.

Jenn Kasbohm, BS 2013.  Thesis: A paleomagnetic reanalysis of the Auborus Formation, Namibia.

Dan Peppe, PhD 2009.  Thesis: A High Resolution Chronostratigraphic Study of the Early Paleocene Floral Record in the Northern Great Plains.

Ian Rose, BS 2009.  Thesis: Paleomagnetism of Mafic Dikes in the Northern Pilbara Craton, Western Australia.

Tim Raub, PhD 2008.  Thesis: Prolonged Deglaciation of Snowball Earth.

Theresa Raub, PhD 2008.  Thesis: Paleomagnetism of Dubawnt Supergroup, Baker Lake Basin, Nunavut, Canada: Refining Laurentia’s Paleoproterozoic Apparent Polar Wander Path.

Catherine Izard, BS 2006.  Thesis: A Preliminary Paleomagnetic Investigation of the Long Range Dikes, Newfoundland and Labrador, Canada.

Eben Rose, MPhil 2004.  Topic: A geological appraisal of prebiology in Earth history.

Yale Paleomagnetic Facility

Established in 2005, the Yale Paleomagnetic Laboratory includes a three-layer Lodestar magnetostatic shield attenuating the ambient magnetic field to <300nT throughout a walk-in working space, a cryogenic DC-SQuID magnetometer with automated sample-changing device capable of performing three-axis measurements on 180 samples successively between user computer inputs, three shielded ASC furnaces with controlled-atmosphere capability (one with auxiliary magnetic coil for paleointensity experiments), in-line automated two-axis static alternating-field (AF) coils and separate Molspin tumbler AF demagnetizer, in-line automated rock-magnetic apparatuses including an isothermal-remanent magnetization (IRM) pulse coil and bulk susceptibility bridge, and an AGICO KLY-4S anisotropy of magnetic susceptibility (AMS) system with attachments for measuring bulk susceptibility through the temperature range 100-1000°K.

This facility was constructed using funds from the National Science Foundation and Yale University.  It is a member of the RAPID consortium of paleomagnetic laboratories with automated sample-changing systems designed by Prof. Joe Kirschvink at Caltech.

See also:  Yale Archaeomagnetism Laboratory, which contains a two-layer Lodestar shield, AGICO spinner magnetometer, ASC furnace, and a Princeton Measurements alternating-gradient magnetometer for generating hysteresis loops and FORC diagrams.

Contact Info

david.evans@yale.edu

+1(203) 640-5726

Office Address: 210 KGL

Mailing address: PO Box 208109, New Haven CT 06520-8109
Street address: 210 Whitney Ave, New Haven CT 06511

Publications

Notes:     *student advisee    †postdoctoral advisee     (for work done under advisement).    Last updated: May 2024.

117.   Mitchell, R.N. & Evans, D.A.D., 2024.  The Balanced Billion.  GSA Today, v.24, no.2, p.10-11. 

116.  †Gong, Z., Evans, D.A.D., Zhang, Z. & Yan, C., 2024.  Was the time-averaged geomagnetic field in the mid-Proterozoic a normal-tesseral quadrupole? Reply.  Geology, v.52(1), e569. 

115.  †Kasbohm, J., Schoene, B., Maclennan, S.A., Evans, D.A.D. & Weiss, B.P., 2023.  Paleogeography and high-precision geochronology of the Neoarchean Fortescue Group, Pilbara, Western Australia.  Precambrian Research, v.394, 107114. 

114.  †Gong, Z., Evans, D.A.D., Zhang, Z. & Yan, C., 2023.  Was the time-averaged geomagnetic field in the mid-Proterozoic a normal-tesseral quadrupole?  Geology, v.51, p.571-575.

113.   Bradley, D.C., Evans, D.A.D., O’Sullivan, P., Taylor, C.D. & Eglington, B.M., 2022.  The Assabet barcode: Mesoproterozoic detrital zircons from Neoproterozoic strata in Mauritania, West Africa. 

112.  Wang, C., Evans, D.A.D., Li, M. & †Wen, B., 2022.  Proterozoic-Mesozoic development of the Quanji Block from northern Tibet and the cratonic assembly of eastern Asia. 

111.   Nance, R.D., Evans, D.A.D. & Murphy, J.B., 2022.  Pannotia: To be or not to be?  Earth-Science Reviews, v.232, 104128.

110. *Peppe, D.J., Evans, D.A.D., Beech, M., Hill, A. & Bibi, F., 2022.  Magnetostratigraphy of the Baynunah Formation.  In: Bibi, F., Kraatz, B., Beech, M. & Hill, A., eds.  Sands of Time: Late Miocene Fossils from the Baynunah Formation, U.A.E.. Springer, Cham, Switzerland., pp. 35-54.

109.  *Gong, Z. & Evans, D.A.D., 2022.  Paleomagnetic survey of the Goulburn Supergroup, Kilohigok Basin, Nunavut, Canada: Toward an understanding of the Orosirian apparent polar wander path of the Slave craton. Precambrian Research, v.369, 106516.

108.  *Wolf, J. & Evans, D.A.D., 2022.  Reconciling supercontinent cycle models with ancient subduction zones.  Earth and Planetary Science Letters, v. 578, 117293.

107.  Shields, G.A., Strachan, R.A., Porter, S.M., Halverson, G.P., Macdonald, F.A., Plumb, K.A., de Alvarenga, C.J., Banerjee, D.M., Bekker, A., Bleeker, W., Brasier, A., Chakraborty, P.P., Collins, A.S., Condie, K., Das, K., Evans, D.A.D., Ernst, R., Fallick, A.E., Frimmel, H., Fuck, R., Hoffman, P.F., Kamber, B.S., Kuznetsov, A., Mitchell, R., Poiré, D.G., Poulton, S.W., Riding, R., Sharma, M., Storey, C., Stueeken, E., Tostevin, R., Turner, E., Xiao, S., Zhang, S.-H., Zhou, Y., and Zhu, M., 2022.  A template for an improved rock-based subdivision of the pre-Cryogenian time scale. Journal of the Geological Society of London, v. 179, jgs2022-222.

106.  Evans, D.A.D., Pesonen, L.J., Eglington, B.M., Elming, S.-Å., Gong, Z., Li, Z.-X., McCausland, P.J., Meert, J.G., Mertanen, S., Pisarevsky, S.A., Pivarunas, A.F., Salminen, J.M., Swanson-Hysell, N., Torsvik, T.H., Trindade, R.I.F., Veikkolainen, T. & Zhang, S., 2021.  An expanding list of reliable paleomagnetic poles for Precambrian tectonic reconstructions.  In: Pesonen, L.J., Salminen, J., Evans, D.A.D., Elming, S.-Å. & Veikkolainen, T. (eds.) Ancient Supercontinents and the Paleogeography of the Earth.  Elsevier, Amsterdam, pp. 605-639.

105.   Evans, D.A.D., 2021.  Meso-Neoproterozoic Rodinia Supercycle.  In: Pesonen, L.J., Salminen, J., Evans, D.A.D., Elming, S.-Å. & Veikkolainen, T. (eds.) Ancient Supercontinents and the Paleogeography of the Earth.  Elsevier, Amsterdam, pp. 549-576.

104.  Salminen, J., Pehrsson, S., Evans, D.A.D. & Wang, C., 2021.  Neoarchean-Paleoproterozoic supercycles.  In: Pesonen, L.J., Salminen, J., Evans, D.A.D., Elming, S.-Å. & Veikkolainen, T. (eds.) Ancient Supercontinents and the Paleogeography of the Earth.  Elsevier, Amsterdam, pp. 465-498. 

103.  *Gong, Z. & Evans, D.A.D., 2021. Constraints on the Precambrian paleogeography of West African Craton.  In: Pesonen, L.J., Salminen, J., Evans, D.A.D., Elming, S.-Å. & Veikkolainen, T. (eds.) Ancient Supercontinents and the Paleogeography of the Earth.  Elsevier, Amsterdam, pp. 423-443.

102.  Pesonen L.J., Salminen J., Evans D.A.D., Elming S.-Å. & Veikkolainen, T., 2021.  Precambrian supercontinents and supercycles – An overview.  In: Pesonen, L.J., Salminen, J., Evans, D.A.D., Elming, S.-Å. & Veikkolainen, T. (eds.) Ancient Supercontinents and the Paleogeography of the Earth.  Elsevier, Amsterdam, pp. 1-50.

101.  Gong, Z.*, Evans, D.A.D., Youbi, N., Ait Lahna, A., Söderlund, U., Ait Malek, M., †Wen, B., Jing, X., †Ding, J., Boumehdi, M.A. & Ernst, R.E., 2021.  Reorienting the West African Craton in Paleo-Mesoproterozoic supercontinent Nuna.  Geology, v.49, p.1171-1176.

100.  *Mitchell, R.N., *Thissen, C.J., Evans, D.A.D., Slotznick, S.P., Coccioni, R., Yamazaki, T., and Kirschvink, J.L., 2021.  A Late Cretaceous true polar wander oscillation. Nature Communications, v. 12, 3629.

99.  †Ding, J., Zhang, S., Evans, D., Yang, T., Li, H., Wu, H., and Chen, J., 2021. North China Craton: the conjugate margin for northwestern Laurentia in Rodinia.  Geology, v. 49, p. 773-778.

98.   Jing, X., Evans, D.A.D., Yang, Z., Tong, Y., Xu, Y., and Wang, H., 2021. Inverted South China: A novel configuration of Rodinia and its breakup.  Geology, v. 49, p. 463-467.

97.  Dmochowski, J.E. & Evans, D.A.D., 2020. Earth’s changing climate:  A deep-time geoscience perspective.  In: Wiggin, B., Fornoff, C. & Kim, P.E., eds. Timescales: Thinking Across Ecological Temporalities (Minneapolis: University of Minnesota Press), p. 27-37.

96.  Evans, D.A.D., 2020.  Pannotia under prosecution. In: Murphy, J.B., Strachan, R.A., and Quesada, C., eds. Pannotia to Pangaea: Neoproterozoic and Paleozoic Orogenic Cycles in the Circum-Atlantic Region. Geological Society of London Special Publication, v. 503, p. 63-81.

95.  †Wen, B., Evans, D.A.D., *Anderson, R.P. & McCausland, P.J.A., 2020.  Late Ediacaran paleogeography of Avalonia and the Cambrian assembly of West Gondwana.  Earth and Planetary Science Letters, v. 552, 116591.

94.  Meert, J.G., Pivarunas, A.F., Evans, D.A.D., Pisarevsky, S., Pesonen, L., Li, Z.-X., Elming, S.-Å., Miller, S.R., Zhang, S., and Salminen, J., 2020. The Magnificent Seven: A proposal for modest revision of the Van der Voo (1990) quality index.  Tectonophysics, v. 790, 228549.

93.  Brenner, A.R., Fu, R.R., Evans, D.A.D., Smirnov, A.V., Trubko, R. & *Rose, I.R., 2020. Paleomagnetic evidence for modern-like plate motion velocities at 3.2 Ga.  Science Advances, v.6 (no.17).

92.  Jing, X., Yang, Z., Evans, D.A.D., Tong, Y., Xu, Y. & Wang, H., 2020. A pan-latitudinal Rodinia in the Tonian true polar wander frame.  Earth and Planetary Science Letters, v. 530, 115880.

91.  Choudhary, B.R., Ernst, R.E., Xu, Y.-G., Evans, D.A.D., de Kock, M.O., Meert, J.G., Ruiz, A.S. & Lima, G.A., 2019. Geochemical characterization of a reconstructed 1110 Ma large igneous province. Precambrian Research, v. 332, 105382.

90.  †Wen, B., Evans, D.A.D., Wang, C., Li, Y.-X. & Jing, X., 2019.  Forum Reply: A positive test for the Greater Tarim Block at the heart of Rodinia: Mega-dextral suturing of supercontinent assembly.  Geology, v. 47, p. e454.

89.   Salminen, J.M., Hanson, R.E., Evans, D.A.D., *Gong, Z., *Larson, T., *Walker, O., Gumsley, A., Söderlund, U. & Ernst, R.E., 2018. Direct Mesoproterozoic connection of Congo and Kalahari cratons in proto-Africa: Strange attractors across supercontinental cycles.  Geology, v. 46, p. 1011-1014.

88.  *Gong, Z., Evans, D.A.D., Elming, S.-Å., Söderlund, U., & Salminen, J.M., 2018. Paleomagnetism, magnetic anisotropy and U-Pb baddeleyite geochronology of the early Neoproterozoic Blekinge-Dalarna dolerite dykes, Sweden.  Precambrian Research, v. 317, p. 14-32 (Corrigendum v. 320, p. 484-485).

87.   †Wen, B., Evans, D.A.D., Wang, C., Li, Y.-X. & Jing, X., 2018.  A positive test for the Greater Tarim Block at the heart of Rodinia: Mega-dextral suturing of supercontinent assembly.  Geology, v. 46, p. 687-690.

86.  Evans, D.A.D., 2018. Research Focus: Probing the complexities of magnetism in zircons from Jack Hills, Australia.  Geology, v. 46, p. 479-480.

85.  *Gong, Z., *Xu, X.X., Evans, D.A.D., Hoffman, P.F., Mitchell, R.N. & Bleeker, W., 2018. Paleomagnetism and rock magnetism of the 1.87 Ga Pearson Formation, Northwest Territories, Canada: A test of vertical-axis rotation within the Great Slave basin.  Precambrian Research, v. 305, p. 295-309.

84.  Veikkolainen, T.H., Biggin, A.J., Pesonen, L.J., Evans, D.A.D. & Jarboe, N.A., 2017.  Data Descriptor: Advancing Precambrian palaeomagnetism with the PALEOMAGIA and PINT(QPI) databases.  Scientific Data, v. 4, doi: 10.1038/sdata.2017.68.

83.    Korenaga, J., Planavsky, N.J. & Evans, D.A.D., 2017. Global water cycle and the coevolution of Earth’s interior and surface environment.  Philosophical Transactions, Royal Society of London, Series A. v. 375, doi: 10.1098/rsta.20150393.

82.  Evans, D.A.D., Smirnov, A.V. & *Gumsley, A.P., 2017. Paleomagnetism and U-Pb geochronology of the Black Range Dykes, Pilbara Craton, Western Australia:  A Neoarchean crossing of the polar circle.  Australian Journal of Earth Sciences, v. 64, p. 225-237. 

81.   Chamberlain, K.R., *Kilian, T.M., Evans, D.A.D., Bleeker, W. & Cousens, B.L., 2017.  Reply: Wyoming on the run – toward final Paleoproterozoic assembly of Laurentia.  Geology, v. 45, p. e412.

80.    Eyster, A.E., Fu, R.R., Strauss, J.V., Weiss, B.P., Roots, C.F., Halverson, G.P., Evans, D.A.D. & Macdonald, F.A., 2017. Paleomagnetic evidence for a 50 degree rotation of the Yukon block relative to Laurentia: Implications for a low-latitude Sturtian Glaciation and the break-up of Rodinia.  Geological Society of America Bulletin, v. 129, p. 38-58.

79.   *Wen, B., Evans, D.A.D. & Li, Y.-X., 2017. Proterozoic paleogeography of Tarim Block: An extended or alternative “missing-link” model for Rodinia?  Earth and Planetary Science Letters, v. 458, p. 92-106.

78.   †Salminen, J.M., Evans, D.A.D., Trindade, R.I.F., Oliveira, E.P., Piispa, E.J. & Smirnov, A.V., 2016. Paleogeography of the Congo/São Francisco craton at 1.5 Ga: expanding the core of Nuna supercontinent.  Precambrian Research, v. 286, p. 195-212.

77.   *Kilian, T.M., Chamberlain, K.R., Evans, D.A.D., Bleeker, W. & Cousens, B.L., 2016. Wyoming on the run – toward final Paleoproterozoic assembly of Laurentia. Geology, v. 44, p. 863-866.

76.    Evans, D.A.D., Veselovsky, R.V., Petrov, P.Yu., Shatsillo, A. & Pavlov, V.E., 2016. Paleomagnetism of Mesoproterozoic margins of the Anabar Shield: A hypothesized billion-year partnership of Siberia and northern Laurentia.  Precambrian Research, v. 281, p. 639-655.

75.    Evans, D.A.D., Trindade, R.I.F., *Catelani, E.L., D’Agrella-Filho, M.S., Heaman, L.M., Oliveira, E.P., Söderlund, U., Ernst, R.E., †Smirnov, A.V. & †Salminen, J.M., 2016.  Return to Rodinia? Moderate to high paleolatitude of the São Francisco/Congo craton at 920 Ma.  In: Li, Z.-X., Evans, D.A.D. & Murphy, J.B., eds., Supercontinent Cycles Through Earth History.  Geological Society of London Special Publication, v. 424, p. 167-190.

74.  *Kasbohm, J., Evans, D.A.D., *Panzik, J.E., Hofmann, M. & Linnemann, U., 2016. Paleomagnetic and geochronologic data from Late Mesoproterozoic redbed sedimentary rocks on the western margin of Kalahari craton.  In: Li, Z.-X., Evans, D.A.D. & Murphy, J.B., eds., Supercontinent Cycles Through Earth History.  Geological Society of London Special Publication, v. 424, p. 145-165.

73.  *Panzik, J.E., Evans, D.A.D., *Kasbohm, J.J., Hanson, R., Gose, W. & DesOrmeau, J., 2016. Using palaeomagnetism to determine late Mesoproterozoic palaeogeographic history and tectonic relations of the Sinclair Terrane, Namaqua orogen, Namibia. In: Li, Z.-X., Evans, D.A.D. & Murphy, J.B., eds., Supercontinent Cycles Through Earth History.  Geological Society of London Special Publication, v. 424, p. 119-143.

72.  Pehrsson, S., Eglington, B.M., Evans, D.A.D., Huston, D. & Reddy, S.M., 2016. Metallogeny and its link to orogenic style during the Nuna supercontinent cycle. In: Li, Z.-X., Evans, D.A.D. & Murphy, J.B., eds., Supercontinent Cycles Through Earth History.  Geological Society of London Special Publication, v. 424, p. 83-94. 

71.  *Kilian, T.M., Bleeker, W., Chamberlain, K., Evans, D.A.D. & Cousens, B., 2016. Palaeomagnetism, geochronology, and geochemistry of the Palaeoproterozoic Sheep Mountain and Powder River dyke swarms - Implications for Wyoming in supercraton Superia.  In: Li, Z.-X., Evans, D.A.D. & Murphy, J.B., eds., Supercontinent Cycles Through Earth History. Geological Society of London Special Publication, v. 424, p. 15-45.

70.  Evans, D.A.D., Li, Z.X. & Murphy, J.B., 2016. Four-dimensional context of Earth’s supercontinents. In: Li, Z.-X., Evans, D.A.D. & Murphy, J.B., eds., Supercontinent Cycles Through Earth History.  Geological Society of London Special Publication, v. 424, p. 1-14.

69.  Driscoll, P.E. & Evans, D.A.D., 2016. Frequency of Proterozoic geomagnetic superchrons. Earth and Planetary Science Letters, v. 437, p. 9-14.

68.  *Wen, B., Evans, D.A.D., Li, Y.-X., Wang, Z. & Liu, C., 2015. Newly discovered Neoproterozoic diamictite and cap carbonate (DCC) couplet in Tarim Craton, NW China: Stratigraphy, geochemistry, and paleoenvironment. Precambrian Research, v. 271, p. 278-294.

67.  Planavsky, N.J., Tarhan, L.G., Bellefroid, E.J., Evans, D.A.D., Reinhard, C.T., Love, G.D. & Lyons, T.W., 2015. Late Proterozoic transitions in climate, oxygen, and tectonics, and the rise of complex life. In: Polly, P.D., Head, J.J. & Fox, D.L., eds., Earth-Life Transitions: Paleobiology in the Context of Earth System Evolution.  The Paleontological Society Papers, v. 21, p. 47-82.

66.  Smirnov, A.V. & Evans, D.A.D., 2015. Geomagnetic paleointensity at ~2.41 Ga as recorded by the Widgiemooltha Dike Swarm, Western Australia.  Earth and Planetary Science Letters, v. 416, p. 35-45. 

65.  Zhang, S., Li, H., Jiang, G., Evans, D.A.D., Dong, J., Wu, H., Yang, T., Liu, P. & Xiao, Q., 2015. New paleomagnetic results from the Ediacaran Doushantuo Formation in South China and their paleogeographic implications. Precambrian Research, v. 259, p. 130-142.

64.  *Panzik, J.E. & Evans, D.A.D., 2014. Assessing the GAD hypothesis with paleomagnetic data from large Proterozoic dike swarms. Earth and Planetary Science Letters, v. 406, p. 134-141.

63.  *Liu, C., Wang, Z., Raub, T.D., Macdonald, F.A. & Evans, D.A.D., 2014. Neoproterozoic cap dolostone deposition in a stratified glacial meltwater plume.  Earth and Planetary Science Letters, v. 404, p. 22-32.

62.  Veikkolainen, T., Pesonen, L.J. & Evans, D.A.D., 2014. PALEOMAGIA: A PHP/MYSQL database of the Precambrian paleomagnetic data.  Studia Geophysica et Geodaetica, v. 58, p. 425-441.

61.  *Mitchell, R.N., Bleeker, W., van Breemen, O., LeCheminant, A.N., Peng, P., Nilsson, M.K.M. & Evans, D.A.D., 2014. Plate tectonics before 2.0 Ga: Evidence from paleomagnetism of cratons within supercontinent Nuna.  American Journal of Science, v. 314, p. 878-894. 

60.  †Salminen, J., Mertanen, S., Evans, D.A.D. & Wang, Z., 2014. Paleomagnetic and geochemical studies of the Mesoproterozoic Satakunta dyke swarms, Finland, with implications for a Northern Europe – North America (NENA) connection within Nuna supercontinent.  Precambrian Research, v.244, p.170-191.

59.  Veikkolainen, T., Evans, D.A.D., Korhonen, K. & Pesonen, L.J., 2014.  On the low-inclination bias of the Precambrian geomagnetic field.  Precambrian Research, v.244, p.23-32.

58.  Evans, D.A.D., 2013.  Reconstructing pre-Pangean supercontinents. Geological Society of America Bulletin, v. 125, p. 1735-1751. 

57.  Calver, C.R., Crowley, J.L., Wingate, M.T.D., Evans, D.A.D., *Raub, T.D. & Schmitz, M.D., 2013. Globally synchronous Marinoan deglaciation indicated by U-Pb geochronology of the Cottons Breccia, Tasmania, Australia.  Geology, v.41, p. 1127-1130.

56.  Li, Z.-X., Evans, D.A.D. & Halverson, G.P., 2013. Neoproterozoic glaciations in a revised global paleogeography from the breakup of Rodinia to the assembly of Gondwanaland. Sedimentary Geology, v. 294, p. 219-232.

55.  Zhang, S., Evans, D.A.D., Li, H., Wu, H., Jiang, G., Dong, J., Zhao, Q., Raub, T.D. & Yang, T., 2013. Paleomagnetism of Nantuo Formation and paleogeographic implications for the South China Block.  Journal of Asian Earth Sciences, v.72, p.164-177.

54.  Smirnov, A.V., Evans, D.A.D., Ernst, R.E., Söderlund, U. & Li, Z.-X., 2013. Trading partners: Tectonic ancestry of southern Africa and western Australia, in supercratons Vaalbara and Zimgarn.  Precambrian Research, v.224, p.11-22.

53.  Swanson-Hysell, N.L., Maloof, A.C., Kirschvink, J.L., Evans, D.A.D., Halverson, G.P. & Hurtgen, M.T., 2012. Constraints on Neoproterozoic paleogeography and Paleozoic orogenesis from paleomagnetic records of the Bitter Springs Formation, Amadeus Basin, central Australia.  American Journal of Science, v.312, p.817-884.

52.  Zhang, S., Li, Z.-X., Evans, D.A.D., Wu, H., Li, H. & Dong, J., 2012. Pre-Rodinia supercontinent Nuna shaping up: A global synthesis with new paleomagnetic results from North China. Earth and Planetary Science Letters, v.353-354, p.145-155.

51.  *Mitchell, R.N., *Kilian, T.M. & Evans, D.A.D., 2012. Supercontinent cycles and the calculation of absolute palaeolongitude in deep time. Nature, v.482, p.208-211.

50. Peppe, D.J., Johnson, K.R. & Evans, D.A.D., 2011. Magnetostratigraphy of the Lebo and Tongue River Members of the Fort Union Formation (Paleocene) in the northeastern Powder River Basin, Montana.  American Journal of Science, v.311, p.813-850.

49.  *Mitchell, R.N., *Kilian, T.M., Raub, T.D., Evans, D.A.D., Bleeker, W. & Maloof, A.C., 2011. Sutton hotspot track: Resolving Ediacaran-Cambrian tectonics and true polar wander of Laurentia.  American Journal of Science, v.311, p.651-663.

48.  Evans, D.A.D. & *Raub, T.D., 2011. Neoproterozoic glacial palaeolatitudes: a global update. In: Arnaud, E., Halverson, G.P. & Shields-Zhou, G., eds., The Geological Record of Neoproterozoic Glaciations.  Geological Society of London Memoirs, v.36, p.93-112.

47.  †Smirnov, A.V., Tarduno, J.A. & Evans, D.A.D., 2011.  Evolving core conditions ca. 2 billion years ago detected by paleosecular variation.  Physics of the Earth and Planetary Interiors, v.187, p.225-231.

46.  Evans, D.A.D. & *Mitchell, R.N., 2011. Assembly and breakup of the core of Paleo-Mesoproterozoic supercontinent Nuna. Geology, v.39, p.443-446.

45.  Li, Z.-X. & Evans, D.A.D., 2011. Late Neoproterozoic 40° intraplate rotation within Australia allows for a tighter-fitting and longer-lasting Rodinia.  Geology, v.39, p.39-42.

44.  Evans, D.A.D. & Halls, H.C., 2010. Restoring Proterozoic deformation within the Superior craton. Precambrian Research, v.183, p.474-489.

43.  Evans, D.A.D., 2010. Proposal with a ring of diamonds. Nature, v.466, p.326-327.

42.  *Mitchell, R.N., Evans, D.A.D., & *Kilian, T.M., 2010. Rapid Early Cambrian rotation of Gondwana.  Geology, v.38, p.755-758.

41.  Bindeman, I.N., Schmitt, A.K. & Evans, D.A.D., 2010. Limits of hydrosphere-lithosphere interaction: Origin of the lowest d18O silicate rock on Earth in the Paleoproterozoic Karelian rift.  Geology, v.38, p.631-634.

40.  *Mitchell, R.N., Hoffman, P.F. & Evans, D.A.D., 2010. Coronation loop resurrected: Oscillatory apparent polar wander of Orosirian (2.05-1.8 Ga) paleomagnetic poles from Slave craton.  Precambrian Research, v.179, p.121-134.

39.  Evans, D.A.D., 2009. The palaeomagnetically viable, long-lived and all-inclusive Rodinia supercontinent reconstruction.  In: Murphy, J.B., Keppie, J.D. & Hynes, A., eds., Ancient Orogens and Modern Analogues.  Geological Society of London Special Publication, v.327, p.371-404.

38. Swanson-Hysell, N.L., Maloof, A.C., Weiss, B.P. & Evans, D.A.D., 2009. No asymmetry in geomagnetic reversals recorded by 1.1-billion-year-old Keweenawan basalts. Nature Geoscience, v.2, p.713-717.

37. Denyszyn, S.W., Halls, H.C., Davis, D.W. & Evans, D.A.D., 2009. Paleomagnetism and U-Pb geochronology of Franklin dykes in High Arctic Canada and Greenland: A revised age and paleomagnetic pole constraining block rotations in the Nares Strait region.  Canadian Journal of Earth Sciences, v.46, p.689-705.

36.  Li, Z.X., Bogdanova, S.V., Collins, A.S., Davidson, A., De Waele, B., Ernst, R.E., Evans, D.A.D., Fitzsimons, I.C.W., Fuck, R.A., Gladkochub, D.P., Jacobs, J., Karlstrom, K.E., Lu, S., Natapov, L.M., Pease, V., Pisarevsky, S.A., Thrane, K. & Vernikovsky, V., 2009. How not to build a supercontinent: A reply to J.D.A. Piper.  Precambrian Research, v.174, p.208-214.

35.  †De Kock, M.O., Evans, D.A.D. & Beukes, N.J., 2009. Validating the existence of Vaalbara in the Neoarchaean.  Precambrian Research, v.174, p.145-154.

34.  Payne, J.L., Hand, M., Barovich, K.M., Reid, A. & Evans, D.A.D., 2009. Correlations and reconstruction models for the 2500-1500 Ma evolution of the Mawson Continent.  In: Reddy, S.M., Mazumder, R., Evans, D.A.D. & Collins, A.S., eds., Palaeoproterozoic Supercontinents and Global Evolution.  Geological Society of London Special Publication v.323, p.319-355.

33.  Eglington, B.M., Reddy, S.M. & Evans, D.A.D., 2009. The IGCP 509 Database System: Design and application of a tool to capture and illustrate litho- and chrono-stratigraphic information for Palaeoproterozoic tectonic domains.  In: Reddy, S.M., Mazumder, R., Evans, D.A.D. & Collins, A.S., eds., Palaeoproterozoic Supercontinents and Global Evolution.  Geological Society of London Special Publication v.323, p.27-47.

32.  Reddy, S.M. & Evans, D.A.D., 2009. Palaeoproterozoic supercontinents and global evolution: Correlations from core to atmosphere. In: Reddy, S.M., Mazumder, R., Evans, D.A.D. & Collins, A.S., eds., Palaeoproterozoic Supercontinents and Global Evolution.  Geological Society of London Special Publication v.323, p.1-26.

31. Kendall, B., Creaser, R.A., Calver, C.R., *Raub, T.D. & Evans, D.A.D., 2009. Correlation of Sturtian diamictite successions in southern Australia and northwestern Tasmania by Re-Os black shale geochronology and the ambiguity of “Sturtian”-type diamictite - cap carbonate pairs as chronostratigraphic marker horizons.  Precambrian Research, v.172, p.301-310.

30.  †De Kock, M.O., Evans, D.A.D., Kirschvink, J.L., Beukes, N.J., *Rose, E. & Hilburn, I., 2009. Paleomagnetism of a Neoarchean-Paleoproterozoic carbonate ramp and carbonate platform succession (Transvaal Supergroup) from surface outcrop and drill core, Griqualand West region, South Africa. Precambrian Research, v.269, p.80-99.

29.  *Peppe, D.J., Evans, D.A.D. & Smirnov, A.V., 2009. Magnetostratigraphy of the Ludlow Member of the Fort Union Formation (Lower Paleocene) of the Williston Basin in North Dakota. Geological Society of America Bulletin, v.121, p.65-79.

28.  †De Kock, M.O., Evans, D.A.D., Gutzmer, J., Beukes, N.J. & Dorland, H.C., 2008. Origin and timing of BIF-hosted high-grade hard hematite deposits – a paleomagnetic approach.  In: Hagemann, S., Rosiere, C., Gutzmer, J. & Beukes, N., eds., BIF-Related High-Grade Iron Mineralization. Reviews in Economic Geology, v.15, p.49-71.

27.  Evans, D.A.D. & Pisarevsky, S.A., 2008. Plate tectonics on early Earth? – weighing the paleomagnetic evidence. In Condie, K. & Pease, V., eds., When Did Plate Tectonics Begin?  Geological Society of America Special Paper, v.440, p.249-263.

26.  *Raub, T.D., Kirschvink, J.L. & Evans, D.A.D., 2007. True polar wander: Linking deep and shallow geodynamics to hydro- and bio-spheric hypotheses. In: Kono, M., ed., Treatise on Geophysics, Volume 5: Geomagnetism (Amsterdam, Elsevier), p.565-589.

25.  *Raub, T.D., Evans, D.A.D. & †Smirnov, A.V., 2007. Siliciclastic prelude to Elatina deglaciation: Lithostratigraphy and rock magnetism of the base of the Ediacaran System.  In: Vickers-Rich, P. & Komarower, P., eds., The Rise and Fall of the Ediacaran Biota.  Geological Society of London Special Publication v.286, p.53-76. 

24.  Pettersson, Å, Cornell, D.H., Moen, H.F.G., Reddy, S. & Evans, D., 2007. Ion-probe dating of 1.2 Ga collision and crustal architecture in the Namaqua-Natal Province of southern Africa. Precambrian Research, v.158, p.79-92.

23.  Evans, D.A.D., 2006. Proterozoic low orbital obliquity and axial-dipolar geomagnetic field from evaporite palaeolatitudes. Nature, v.444, p.51-55. First compilation of paleomagnetic data from all evaporite deposits in Earth history, and confirmation of their expected distribution in the subtropics. Quantitative refutation of the high-obliquity hypothesis for Precambrian time.

22.  *De Kock, M.O., Evans, D.A.D., *Dorland, H.C., Beukes, N.J. & Gutzmer J., 2006. Paleomagnetism of the lower two unconformity bounded sequences of the Waterberg Group, South Africa: Towards a better-defined apparent polar wander path for the Paleoproterozoic Kaapvaal Craton.  South African Journal of Geology, v.109, p.157-182. Presentation of paleomagnetic poles from ~2.05 and ~1.95 Ga redbeds on the Kaapvaal craton. Establishment of a large loop in the Kaapvaal apparent polar wander path between 2.05 and 1.88 Ga.

21.  *Dorland H.C., Beukes N.J., Gutzmer J., Evans, D.A.D. & Armstrong R.A., 2006. Precise SHRIMP U-Pb age constraints on the lower Waterberg and Soutpansberg Groups, South Africa.  South African Journal of Geology, v.109, p.139-156. Presentation of ~2.05 Ga ages for early redbed successions, and development of a chronostratigraphic correlation model of unconformity-bounded sequences following emplacement of the Bushveld igneous complex.

20.  Peterson K.J., McPeek M. & Evans D.A.D., 2005. Tempo and mode of early animal evolution: Inferences from rocks, Hox, and molecular clocks.  In: Vrba E.S. & Eldredge N., eds, Macroevolution: Diversity, Disparity, Contingency: Essays in Honor of Stephen Jay Gould, Paleobiology, v.31, supplement to no.2, p.36-55.  Review of molecular clock estimates of early animal evolution, in the context of recent advances in Ediacaran stratigraphy and correlation. Development of the model that origination of the animal “gut” spurred rapid evolution of all animal clades into the Cambrian “explosion” of diversity.

19.  Li Z.X., Evans D.A.D. & Zhang S., 2004. A 90° spin on Rodinia: Causal links among the Neoproterozoic supercontinent, superplume, true polar wander and low-latitude glaciation. Earth and Planetary Science Letters, v.220, p.409-421.  Presentation of the ~800 Ma Xiaofeng Dykes paleomagnetic pole, and development of a model whereby the Sturtian global glaciation is a consequence of intense silicate weathering (CO2 drawdown) of volcanic rocks erupted in tropical latitudes associated with Rodinia breakup.

18.  Evans D.A.D., Sircombe K., Wingate M.T.D., Doyle M., Pidgeon R.T., *McCarthy M. & *Van Niekerk H.S., 2003.  Revised geochronology of magmatism in the western Capricorn orogen at 1805-1785 Ma:  Diachroneity of the Pilbara-Yilgarn collision. Australian Journal of Earth Sciences, v.50, p.853-864.  Presentation of ~1.8 Ga SHRIMP U-Pb ages for volcanic rocks and a granite suite along the southern margin of the Pilbara craton in Western Australia.  Development of the foreland basin model for the Ashburton Basin, implying collision of about that age.

17.  Evans D.A.D., 2003. A fundamental Precambrian-Phanerozoic shift in Earth’s glacial style?  Tectonophysics, v.375, p.353-385.  Summary of paleolatitudes and age constraints for all known pre-Pleistocene glacial deposits.  Review and analysis of proposed causes of glaciation through Earth history, and speculation that more complex ecosystem feedbacks following the Cambrian radiation of animals inhibited runaway climate feedbacks during Phanerozoic time. Contribution to a memorial volume in honor of the life and career of Chris McA. Powell.

16.  Evans D.A.D., 2003. True polar wander and supercontinents. Tectonophysics, v.362, p.303-320.  Development of the conceptual model for TPW through the supercontinent cycle, following paper #6 (Evans, 1998; below). Contribution to a festschrift in honor of Rob Van der Voo.

15.  Wingate M.T.D. & Evans D.A.D., 2003. Palaeomagnetic constraints on the Proterozoic tectonic evolution of Australia.  In: Yoshida M., Windley B. & Dasgupta S., eds, Proterozoic East Gondwana: Super Continent Assembly and Break-up, Geological Society of London Special Publication 206, p.77-91.  Discussion of Proterozoic conjunction versus separation of the three Australian cratons.

14.  Pisarevsky S.A., Wingate M.T.D., Powell C.McA., Johnson S. & Evans D.A.D., 2003.  Models of Rodinia assembly and fragmentation.  In: Yoshida M., Windley B. & Dasgupta S., eds, Proterozoic East Gondwana: Super Continent Assembly and Break-up, Geological Society of London Special Publication 206, p.35-55. Review of Rodinia reconstructions and development of a new, paleomagnetically viable, global model.

13.  Evans D.A.D., Beukes N.J. & Kirschvink J.L., 2002. Paleomagnetism of a lateritic paleo-weathering horizon and overlying Paleoproterozoic redbeds from South Africa: implications for the Kaapvaal apparent polar wander path and a confirmation of atmospheric oxygen enrichment.  Journal of Geophysical Research, v.107(B12), doi: 10.1029/2001JB000432. Presentation of paleomagnetic poles from the ~2.1 Ga Gamagara Formation, the ~1.93 Ga Hartley lavas, and a ~1.2 Ga Namaqua orogen overprint.  Postive conglomerate test on hematitic pebbles of laterized iron formation implying oxic atmosphere at ~2.1 Ga.

12.  Wingate M.T.D., Pisarevsky S.A. & Evans D.A.D., 2002. Rodinia connections between Australia and Laurentia: no SWEAT, no AUSWUS?  Terra Nova, v.14, p.121-128. Presentation of the ~1070 Ma Bangemall sills (subsequently included in the Warakurna large igneous province) paleomagnetic pole from Western Australia, and introduction of the AUSMEX juxtaposition of Australia and Laurentia in Rodinia.

11.  Evans D.A.D., Gutzmer J., Beukes N.J. & Kirschvink J.L., 2001. Paleomagnetic constraints on ages of mineralization in the Kalahari Manganese Field, South Africa.  Economic Geology, v.96, p.621-631.  Presentation of the Mamatwan and Wessels paleomagnetic poles, implying stages of Mn ore formation during orogenic events at ~1.9 and ~1.1 Ga.

10.  Evans D.A.D., 2000. Stratigraphic, geochronological, and paleomagnetic constraints upon the Neoproterozoic climatic paradox.  American Journal of Science, v.300, p.347-433. Global compilation of predominantly low to moderate paleolatitudes for Neoproterozoic glacial deposits. Superseded by paper #48 (Evans and Raub, 2011; above).

9.  Martin M.W., Grazhdankin D.V., Bowring S.A., Evans D.A.D., Fedonkin M.A. & Kirschvink J.L., 2000. Age of Neoproterozoic bilaterian body and trace fossils, White Sea, Russia: Implications for metazoan evolution.  Science, v.288, p.841-845. Presentation of the ~555 Ma U-Pb zircon age from the Winter Coast section bearing important Ediacara biota.

8.  Evans D.A.D., Li Z.X., Kirschvink J.L. & Wingate M.T.D., 2000. A high-quality mid-Neoproterozoic paleomagnetic pole from South China, with implications for ice ages and the breakup configuration of Rodinia.  Precambrian Research, v.100, p.313-334. Presentation of the ~750 Ma Liantuo Formation paleomagnetic pole from the South China block.

7.  Mound J.E., Mitrovica J.X., Evans D.A.D. & Kirschvink J.L., 1999. A sea-level test for inertial interchange true polar wander events. Geophysical Journal International, v.136, p.F5-F10. Numerical simulations of relative sea-level response to TPW of varying speed and duration.

6.  Evans D.A., 1998. True polar wander, a supercontinental legacy.  Earth and Planetary Science Letters, v.157, p.1-8. Incorporation of the putative Cambrian and mid-Paleozoic TPW oscillations into a coherent model of TPW through the supercontinent cycle.

5.  Evans D.A., Ripperdan R.L. & Kirschvink J.L., 1998. Polar wander and the Cambrian; response.  Science, v.279, p.9, correction p.304. Response to a technical comment on the Kirschvink et al. 1997 Science paper on Cambrian TPW.

4.  Kirschvink J.L., Ripperdan R.L. & Evans D.A., 1997. Evidence for a large-scale reorganization of Early Cambrian continental masses by inertial interchange true polar wander. Science, v.277, p.541-545. Provocative hypothesis of Cambrian TPW: 90° in 15 million years, proposed to disrupt ocean circulation patterns profoundly, and thereby spur animal diversification.

3.  Evans D.A., Beukes N.J. & Kirschvink J.L., 1997. Low-latitude glaciation in the Palaeoproterozoic era.  Nature, v.386, p.262-266. First robust paleomagnetic determination of tropical glaciation prior to Neoproterozoic time.  Presentation of the ~2220 Ma Ongeluk paleomagnetic pole from the Kaapvaal craton.

2.  Evans D.A., Zhuravlev A.Yu., Budney C.J. & Kirschvink J.L., 1996. Palaeomagnetism of the Bayan Gol Formation, western Mongolia. Geological Magazine, v.133, p.487-496. Presentation of magnetostratigraphic data from the Cambrian reference section in the Dzabkhan Basin. Contribution to a special volume on that section.

1.  Baldridge W.S., Ferguson J.F., Braile L.W., Wang B., Eckhardt K., Evans D., Schultz C., Gilpin B., Jiracek G.R. & Biehler S., 1994. The western margin of the Rio Grande Rift in northern New Mexico: An aborted boundary?  Geological Society of America Bulletin, v.106, p.1538-1551. Synthesizes seismic and geologic data from the SAGE program (Summer of Applied Geophysical Experience), to produce a new model for late Cenozoic rifting in northern New Mexico.