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S U M M A R Y
Using a classical averaging approach, we derive a two-phase theory to describe the defor-
mation of a porous material made of a matrix containing voids. The presence and evolution
of surface energy at the interface between the solid matrix and voids is taken into account
with non-equilibrium thermodynamic considerations that allow storage of deformational work
as surface energy on growing or newly created voids. This treatment leads to a simple de-
scription of isotropic damage that can be applied to low-cohesion media such as sandstone.
In particular, the theory yields two possible solutions wherein samples can either ‘break’ by
shear localization with dilation (i.e. void creation), or undergo shear-enhanced compaction
(void collapse facilitated by deviatoric stress). For a given deviatoric stress and confining pres-
sure, the dominant solution is that with the largest absolute value of the dilation rate, |�|,
which thus predicts that shear-localization and dilation occur at low effective pressures, while
shear-enhanced compaction occurs at larger effective pressure. Stress trajectories of constant
|�| represent potential failure envelopes that are ogive- (Gothic-arch-) shaped curves, wherein
the ascending branch represents failure by dilation and shear-localization, and the descending
branch denotes shear-enhanced compactive failure. The theory further predicts that the onset
of dilation preceding shear-localization and failure necessarily occurs at the transition from
compactive to dilational states and thus along a line connecting the peaks of constant-|�|
ogives. Finally, the theory implies that while shear-enhanced compaction first occurs with in-
creasing deviatoric stress (at large effective pressure), dilation will occur at higher deviatoric
stresses. All of these predictions in fact compare very successfully with various experimental
data. Indeed, the theory leads to a normalization where all the data of failure envelopes and
dilation thresholds collapse to a single curve.
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1 I N T RO D U C T I O N

Understanding how tectonic plates are spontaneously generated and
how they interact with mantle convection is a major challenge
in geodynamics. We know that some of the necessary ingredi-
ents of a plate rheology are a strain-rate weakening, a tempera-
ture dependence, a memory and a long-term healing capacity (see
Bercovici et al. 2000, for a review). All of these ingredients can
be found in theories where the rheology is a function of a damage
parameter (or damage state variable) that obeys is own evolution
equation.

In a series of papers, Bercovici et al. (2001a,b) (which we shall re-
fer to herein as BRS1 and BRS2), Ricard et al. (2001) and Bercovici
& Ricard (2003) demonstrated a fruitful analogy between damage
mechanics and two-phase fluid dynamics. In particular, the creation
of cracks and voids involves the deposition of crack-surface energy
in a way similar to the growth of surface energy on the interface

between two immiscible phases. In BRS2, this analogy lead to a
two-phase damage theory that was developed using two incompress-
ible fluids. In this paper we will show that the theory can be further
simplified when the less viscous phase is simply identified with vac-
uum or void, i.e. with a fluid without density, viscosity or pressure.
We will then show that the properties of our two-phase void–matrix
medium are indeed similar to those observed in laboratory experi-
ments on rock deformation.

2 B A S I C T H E O RY

We consider that a porous material (e.g. sandstone) is a mixture
of matrix (e.g. silicic grains) and voids. It contains a quantity of
voids which have a volume fraction φ. The quantity 1 − φ is the
fraction of pure matrix in a given volume of mixture, δV . As with
all continuum models of two-phase flow, δV is assumed to be larger
than the volume of pores but small enough to resolve ‘macroscopic’
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(in contrast to ‘microscopic’, which in two-phase media refers to
the grain- and/or pore-scale) gradients in the medium. The porosity
φ is therefore considered a continuous, well-behaved mathematical
function (e.g. Drew 1971). A continuum description of the mixture
can then be obtained by averaging the microscopic properties over
the test volume δV . The macroscopic averages of the matrix true
velocity, pressure and stresses over the complex topology of the pure
matrix phase will be labelled vm , Pm and τm , respectively.

We consider that in the mixture, the matrix is isotropically con-
nected. For simplicity, we define the matrix density ρm and viscosity
µm to be constants. The pure matrix material obeys the usual incom-
pressible Navier–Stokes equations with true, microscopic velocities.
The complexities of the macroscopic rheological behaviour of the
two-phase mixture only come from the interplay between matrix and
voids. Our approach is akin to rate and state models of localization
(Sleep 2002), where the state variable is identified with porosity. The
theory, however, could be generalized to cases where µm is variable
or stress dependent.

The procedures to average the equations of mass, momentum
and energy conservations in a mixture of matrix and void are in
many aspects similar to those needed for a mixture of two fluids
(see BRS1). They will not be repeated here in detail, we will simply
emphasize the differences due to replacing a fluid of low viscosity
by voids. The major ones are of course that there are no mass and
momentum conservation equations for voids.

2.1 Mass

The equation of matrix conservation appears as

∂(1 − φ)

∂t
+ ∇ · [(1 − φ)vm] = 0. (1)

This equation can be recast in terms of porosity advection and cre-
ation, i.e.

Dmφ

Dt
= �, (2)

where the Lagrangian derivative is

Dm

Dt
= ∂

∂t
+ vm · ∇, (3)

in which the rate of matrix dilation, or void production, is

� = (1 − φ)∇ · vm . (4)

2.2 Momentum

The matrix force balance is identical to the total force balance equa-
tion (see eq. 76 of BRS1)

0 = −∇[(1 − φ)Pm] + ∇ · [(1 − φ)τm]
−(1 − φ)ρm gẑ + ∇(γα).

(5)

The last term of this equation introduces γ , the surface tension,
and α, the interfacial area per unit volume of mixture. A gradient
in porosity is associated with a gradient in surface tension that en-
ters the momentum equation like an extra body force (just like the
gradients of pressure or of viscous stresses). By grouping the three
terms that contain the ∇ operator, one sees that the macroscopic
total stress in the porous material is

� = (1 − φ)(τm − Pm I) + γαI), (6)

where I is the identity tensor. In addition to the usual deviatoric and
pressure terms, acting on a proportion 1 − φ of matrix, γα is the
effective contribution to pressure by interface surface tension.

The force balance eq. (5) is not identical to that derived in BRS1
(eq. 73) for a two-phase flow. In the case where the voids are filled
with a fluid, some shear stresses can be transmitted through inter-
faces and modelled by a Darcy interaction term, and surface tension
can be balanced not only by matrix stresses but also by fluid stresses
(see Bercovici & Ricard 2003, for more details).

As in BRS1, matrix stresses are simply given by

τm = µm

[
∇vm + [∇vm]t − 2

3
(∇ · vm)I

]
, (7)

i.e. although the macroscopic matrix flow looks compressible, no
bulk viscosity explicitly enters the rheological equation relating
macroscopic stresses and velocities.

2.3 Energy

Similarly to what has been found in BRS1 (eqs 78 and 79) but
assuming that interfacial energy is transported only with the matrix,
we arrive at the entropy equation

(1 − φ)ρmcm
Dm T

Dt
− T

[
Dm

Dt

(
α

dγ

dT

)
+ α

dγ

dT
∇ · vm

]

= Q − ∇ · q + (1 − f ) + B

(
Dm

Dt
φ

)2

(8)

(see also Bercovici & Ricard 2003). The term −α(dγ /dT) rep-
resents interfacial entropy and α(dγ /dT)∇ · vm is similar to an
adiabatic cooling term (i.e. dilating the mixture and increasing the
interface area while holding the interface entropy constant, induces
an effective loss of interface entropy per unit area to compensate).
The term  is positive definite and represents the deformational
work

 = (1 − φ)∇vm : τm . (9)

Isotropic viscous compaction introduces another positive entropy
source B(Dmφ/Dt)2, where the parameter B will be discussed in
the next paragraph (see also BRS1).

However, for a two-phase flow it has been argued in BRS1 that
only a quantity 1 − f of the deformational work (0 ≤ f ≤ 1) is
transformed into heat production. A proportion f goes rather into
making new interfaces. This leads to the damage equation(

Pm + γ
dα

dφ

)
Dmφ

Dt
= −B

(
Dmφ

Dt

)2

+ f . (10)

This equation is related to the microscopic stress-continuity bound-
ary conditions at the matrix–void interfaces. In the following, using
eq. (2), we will make use of the damage equation on the form

f  =
(

Pm + γ
dα

dφ
+ B�

)
�. (11)

In BRS1, it was shown that in the case of spherical empty bubbles
of radius R, the term dα/dφ is simply the total curvature 2/R, which
enters the classical Laplace equilibrium surface-tension condition,
which for our medium would appear as Pm = −2γ /R since the
voids exert no pressure. Therefore, near equilibrium the right-hand
side of eq. (11) is zero and the Laplace condition is obtained. At low
energy input (i.e.  = 0) the departure from the Laplace condition is
proportional to the rate of void formation: a matrix pressure larger
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than the Laplace condition closes the voids. A high energy input
(i.e.  
= 0) can favour the formation of new cracks.

The three scalar eqs (2), (8) and (11) and the vectorial equation
(5), control the behaviour of the mixture defined by the six variables
φ, vm , Pm and T . These equations must be augmented by three phe-
nomenological equations; the rheological law eq. (7), the empirical
relationship relating the interfacial area density α to the porosity φ

(Ni & Beckerman 1991; Bercovici et al. 2001a) and the expression
for B. A complete discussion of the differences between the various
two-phase formalisms, that of McKenzie (1984), that of BRS1 and
this void–matrix limit is presented in Bercovici & Ricard (2003).

2.4 Damage equation in terms of principal stresses

As shown in BRS1, the coefficient B controls the resistance of
the mixture to isotropic deformation. Even when the matrix is
isotropically deformed at macroscopic scale, there are still devia-
toric stresses at the microscopic or grain scale. The average of these
microscopic viscous stresses is equivalent to a finite macroscopic
isotropic stress or pressure (see BRS1). In the simplest cases of a
purely viscous, connected matrix, B has the form

B = K0µm

φ(1 − φ)
, (12)

where the coefficient K 0 can be computed analytically for pores of
simple topology (e.g. spheres and cylinders) and is always close to
1. The coefficient B plays a role similar to that of the bulk viscosity
in the two-phase equations of McKenzie (1984).

Next, we apply the damage equation, eq. (11), to porous rocks.
Porous rocks have intrinsically different behaviours under tension
and compression. Under compression, we assume that the microme-
chanical model that we developed for a viscous matrix still applies
such that K 0 ∼ 1. Under tension, however, low-cohesion porous
materials undergo deformation and failure at much smaller tensile
stresses and with much less resistance than when under compres-
sion. The grain separation can occur without intrinsic deformation
of each grain. We therefore postulate that K 0 � 1 under tension.

To make our theoretical results comparable with laboratory ob-
servations, we now rewrite the damage equation, eq. (11), in terms
of principal stresses. We define σ i , i = 1, 2, 3 as the three principal
total stresses externally applied during an experiment and adopt the
convention that compactive stresses are positive. The local integra-
tion of the force balance equation, as in eq. (6) indicates that

(1 − φ)(τmi − Pm) + γα = −σi , (13)

where τmi is the deviatoric matrix normal stress along the princi-
pal axis associated with σ i ; for simplicity, gravitational effects are
neglected, or cancelled with hydrostatic pressure gradients.

After some algebraic manipulation, the matrix pressure, the de-
viatoric stresses and the deformational work can be expressed in
terms of the principal stresses σ i , which leads to

Pm = 1

(1 − φ)
(γα + P), (14)

 = 1

1 − φ

Q2

3µm
, (15)

where the mean stress P, and the rms differential stress Q (which
are related to the first two stress invariants) are

P = σ1 + σ2 + σ3

3
, (16)

Q2 = 3

2

[
(σ1 − P)2 + (σ2 − P)2 + (σ3 − P)2

]
. (17)

Q has been defined according to Wong et al. (1997) such that under
uniaxial compression (σ 2 = σ 3), Q is simply |σ 1 − σ 3|. Under
simple shear (σ 2 = −σ 1, σ 3 = 0), Q is

√
3|σ1|.

Taking into account our assumption that K 0(�) is either approx-
imately 0 or K 0, we can rewrite the damage equation (11) in terms
of the effective and differential stresses P and Q [using eqs (14) and
(15)](

Q

Q∗

)2

= P + Pγ

P∗
�

�0
if � > 0, (18)

(
Q

Q∗

)2

= 1

P∗

(
P + Pγ + P∗ �

�0

)
�

�0
if � < 0, (19)

where we introduce the new quantities, Pγ , P∗, Q∗ given by

Pγ = γ

[
α + (1 − φ)

dα

dφ

]
(20)

P∗ = K0

φ
µm�0, (21)

Q∗ =
√

3K0

φ f
µm�0. (22)

The quantity �0 is an arbitrary rate of porosity change. As demon-
strated in Ricard et al. (2001), for a very general choice of physically
admissible α(φ) relationships, Pγ is positive for all φ.

The P–Q trajectories of eqs (18) and (19) corresponding to con-
stant � are depicted in Fig. 1. For positive � (i.e. material dilation),
eq. (18) predicts that Q is proportional to

√
P + Pγ . If, in eq. (18),

the differential stress Q is held at a finite value while the mean
compressive stress P approaches −Pγ from positive values, then �

necessarily goes to +∞. Physically this means that once a negative
mean stress P cancels out the effective cohesion provided by surface
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Figure 1. Constant rates of void production in the P–Q space according to
eqs (18) and (19). We arbitrarily use P∗ = 90, Q∗ = 30, Pγ = 10, �0 = 1
and various � that are indicated along the curves (these values correspond
to K 0 = 1, µ = 0.9, f = 0.27, φ = 0.01). The constant rates of expansion,
� > 0 or compaction, � < 0, correspond to parabolas. When the effective
mean stress overcomes the cohesion pressure (P < −Pγ ) an instantaneous
rupture is predicted (� = +∞).
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tension (which acts to collapse voids and to compact the material),
then any differential stress Q in excess of the mean stress will cause
instantaneous damage and dilation of the matrix. Thus, no finite
solutions are allowed for even more negative mean stresses (i.e.
P < −Pγ ). Realistically, of course, there should be some small but
finite resistance to dilation rather than, as we assume, K 0 = 0 for �

> 0, which would thus prohibit such explosive behaviour. What is
important to emphasize, however, is that Pγ is therefore the effec-
tive cohesive strength of the material. However, surface tension γ

of rocks is a relatively small number (typically 1 Jm−2) and Pγ is
likewise small (Pγ � P∗), which corresponds well to low-cohesion
materials such as sandstone.

The solutions for compaction (� < 0) also correspond to parabo-
las in the P–Q space. The rate of porosity reduction � goes as −(P
+ Pγ )�0/P∗ at large effective mean stress, and as −(Q/Q∗)�0 at
large differential stress. Note that in the absence of imposed stresses,
P = Q = 0, the surface tension term will slowly close the porosity
at the rate � = −�0 Pγ /P∗. This self-healing of the porous material,
converts surface energy back into heat through the source term B�2

(see eq. 8).

2.5 Theoretical prediction

Our theory predicts that under given P and Q conditions, the system
will evolve by changing its porosity. However, two solutions are
possible

�+ = �0
P∗

P + Pγ

(
Q

Q∗

)2

, (23)

�− = −�0

2


 P + Pγ

P∗ +
√(

P + Pγ

P∗

)2

+ 4

(
Q

Q∗

)2

 , (24)

which are solution of eqs (18) and (19), respectively (we can neglect
a third solution similar to eq. (24), but with a minus sign in front of
the radical since this only permits �− > 0).

Any solution with non-zero� is unstable (since it entails evolution
away from the initial porosity φ); however, the dominant solution,
i.e. the most unstable, for the given stress state is necessarily that with
largest absolute dilation rate |�|, i.e. the absolute dilation rate will be
max(|�+|, |�−|). This solution is, in effect, the one that mitigates an
unstable stress state most rapidly. Contours of max(|�+|, |�−|) are
shown in Fig. 2 and appear as ogive, or Gothic-arch-shaped curves.
The branch of the curve to the left of the ogive peaks represents
dilation and those to the right represent compaction.

We contend that empirical failure envelopes will effectively fall
on these ogive curves because either ‘shear localization’ or ‘cata-
clastic compaction’ is detected experimentally when |�| exceeds a
threshold value, say �0, i.e. when � > �0, shear-localization is ob-
served; when � < −�0, compaction is observed. For example, the
experimental detection for failure possibly occurs when the dilation
or compaction rate exceeds the given adjustment rate for the loading
apparatus (e.g. natural compaction that is faster than the compres-
sion rate of the loading apparatus will appear as the first measurable
strength loss). Thus failure would be detected at or near a given di-
lation rate which is itself determined by machine properties. There-
fore, we predict that the ogive-shaped contours of max(|�+|, |�−|)
also represent possible failure envelopes.

The onset of dilation as a precursor to shear-localization failure
will occur at the transition from compactive to dilational modes.
A stress trajectory with a fixed value of P, but with Q increasing
from zero, will intersect the compressive branches of ogive curves
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Figure 2. Experimental data on Berea sandstone as a function of effective
mean stress and differential stress. Various symbols depict the onset of shear-
induced dilation (stars), the fracture (filled squares), the shear-enhanced
compaction (open squares). The data are close along the solutions of eqs (18)
and (19) corresponding to the largest absolute value of the porosity change.
Before reaching the domain of strong extension (light grey), the system
in moderate compression (dark grey) has first to cross the line of onset of
dilation eq. (25). The solid lines correspond to extension, the dashed lines
to compression. They correspond to |�/�0| = 0.25, 0.5, 0.75, 1, 2 and 4
where �0 corresponds to the level of porosity change on the observed failure
envelope.

until it intersects the peak of an ogive curve, after which it will
intersect dilational branches (see Fig. 2). Thus the onset of dilation
(transition from compactive to dilational) for any arbitrary P will
coincide with the peak of an ogive curve, which occurs where �+

= |�−|. The onset curve is therefore the line connecting all ogive
peaks, as shown in Fig. 2.

The P–Q space is therefore divided into two domains, one of
compression, one of dilation separated by the dilation onset curve
�+ = −�−, which is simply the line

Q = ν(P + Pγ ), (25)

where

ν =
√

2
Q∗

P∗ =
√

6φ

K0 f
. (26)

This linear relationship looks like a generalization of the Mohr–
Coulomb criterion (or Amonton’s law) where ν and ν Pγ are some-
what equivalent to a coefficient of internal friction and a critical yield
stress (Jaeger & Cook 1979). However, there are two major differ-
ences. Eq. (25) gives the onset of dilation, not the failure criterion
and the intermediate stress σ 2 enters in P while the Mohr–Coulomb
criterion is strictly bidimensional.

Below the line given by eq. (25) the system is in compression and
above it is in expansion. The base of the ogive of constant |�| in
P–Q space (i.e. where it intersects the line Q = 0) spans between
P = −Pγ and P = P∗|�|/�0 − Pγ ; the summit of these ogives are
at P = 1

2 P∗|�|/�0−Pγ and Q = Q∗(|�|/�0)/
√

2. These different
curves and domains illustrated in Fig. 2 correspond topologically to
the schematic map proposed in Zhu & Wong (1997).

For 0 < P + Pγ < P∗/2 and small Q, (in the dark-grey zone
of Fig. 2 and left of the ogive summit) the system is always mildly

C© 2003 RAS, GJI, 155, 1057–1064



November 18, 2003 13:4 Geophysical Journal International gji˙2112

Void-damage theory 1061

compacting (−�0 < � < 0). When Q increases, the system remains
in this mild compactive regime, then it crosses the onset of dilation
(�+ = |�−|) and enters a mild disruptive regime where 0 < � < �0

(white zone in Fig. 2 labelled ‘moderate extension’). Eventually it
breaks into the light-grey zone (� > �0).

The situation for P + Pγ > P∗/2 (right of the ogive summit)
is different. When Q increases from zero, the sample crosses the
compactive branch, from dark-grey to white (−�− = �0), but even-
tually should cross the dilation branch (from white to light-grey)
(�+ = �−). In other words, when increasing the shear stress, a sam-
ple that breaks will not compact at larger shear stress but a sample
that undergoes cataclastic compaction, should break at a larger shear
stress.

In summary, the major predictions of the theory are: (1) fail-
ure envelopes for either dilational shear-localization, or shear-
enhanced compaction will occur on ogive-shaped curves of constant
max(|�+|, |�−|); (2) the onset of dilation will occur along a line con-
necting the peaks of these ogive curves, i.e. where �+ = |�−|; and
(3) at high confining pressure P shear-enhanced compactive failure
will initially ensue with increasing shear stress Q, but dilation and
shear-localization can occur at much higher Q. We will see that these
predictions match a surprisingly wide array of experimental data.

3 C O M PA R I S O N W I T H E X P E R I M E N T S

It may seem strange to use viscous modelling to discuss the me-
chanical deformation of a porous material where the conventional
approach is to use an elastic rheology with failure (Fung 1977)
or damage (Lyakhovsky et al. 1997). However, fracture and com-
paction are irreversible processes that are probably as much related
to viscosity as to elasticity. In fact, in this paper, the viscosity is
always multiplied by �0 and their product which has a dimension of
stress simply enters as a measure of the resistance of the material to
failure or cataclastic compaction.

Laboratory measurements on mechanical deformation of porous
rocks have been performed by various authors. In this paper, we use
experiments mostly on sandstones (Schock et al. 1973; Jamison &
Teufel 1979; Khan et al. 1991; Wong et al. 1997), except for one on
limestone (Baud et al. 2000). The authors use triaxial experiments to
investigate the non-elastic properties of the natural materials either
under brittle failure or under cataclastic compaction. They observe
that the failure envelopes are both functions of the effective mean
stress P and of the differential stress Q (in their experiments the pore
pressure Pp is non-zero, but once they decrease the mean stress by
Pp, their P and Q variables are identical to ours).

Experimental failure data from various experiments on Berea
sandstones (Jamison & Teufel 1979; Khan et al. 1991; Wong et al.
(1997) are plotted in Fig. 2 along with our theoretical curves; it
is immediately clear that the empirical failure envelope coincides
with an ogive of constant |�| (where the brittle fracture are depicted
by filled squares, the shear-induced compaction by open squares).
To scale the curves to the experimental data we have chosen for
our theory Pγ ∼ 0 (the cohesion is experimentally very low for
sandstones), P∗ = 400 MPa, Q∗ = 334 MPa and |�| = �0 = 1 on
the failure envelope. The data on onset of dilation and shear-induced
dilation (stars) is also shown and lies very close to the line joining
the summits of the various ogive curves corresponding to different
|�|, as predicted.

Since the failure envelopes appear to fall on curves of constant
|�|, we can set the arbitrary scale �0 to this constant and thus choose
|�|/�0 = 1 on the failure envelope and rewrite the damage equations
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Figure 3. Theoretical failure envelopes compared with laboratory experi-
ments performed on various sandstone samples (Wong et al. 1997; Jamison
& Teufel 1979). According to eqs (27) and (28), each envelope has a maxi-
mum at Q = Q∗ that separates the domains of shear localization failure (at
low P, depicted with filled symbols) and of the shear enhanced compaction
(at larger P, depicted with empty symbols). Without differential stress, the
sample crushes under the hydrostatic pressure P∗. The values of P∗ and Q∗
are summarized in Table 1.

eqs (18) and (19) as(
Q

Q∗

)2

= P + Pγ

P∗ under shear localization, (27)

(
Q

Q∗

)2

= P∗ − P − Pγ

P∗ under cataclastic compaction. (28)

The summit of the failure ogive is therefore at Q∗/
√

2 and this value
corresponds to the maximum differential stress that can be sustained
by a sample. The existence of a differential stress above which yield
occurs (independently of the effective pressure) is usually called
the von Mises (1913) criterion. The quantity P∗ − Pγ becomes
the onset of grain crushing (the right foot of the shear-enhanced
compaction curve at Q = 0).

The above failure predictions are in remarkable agreement with
all the experimental data that we collected. Fig. 3 depicts the ob-
servations of rock failure (filled symbols) and cataclastic com-
paction (empty symbols) for three sandstone samples (Boise II,
Adamswiller, Kayenta) (Wong et al. 1997). For Berea sandstone
we reported the experiments already plotted in Fig. 2. The P∗, Q∗

values that we use to draw the theoretical curves are summarized
in Table 1. For these experiments we are not able to distinguish Pγ

from 0, although the cohesion strength cannot be zero. This agrees
with the findings of Wong et al. (1997) where the authors had as-
sumed that Pγ = 2 per cent P∗. Table 1 includes the parameters
needed to fit to other sandstones (Rothbach, Darley Dale and Lance)
and a limestone (Solnhofen) that are not plotted in Fig. 3 to avoid
too much overlapping between curves.

In the case of shear localization and when Pγ = 0, the fail-
ure criterion eq. (27) corresponds exactly to Murrel’s extension of
the Griffith criterion (Griffith 1921; Murrell 1963). This extension
arises naturally from our theory although, traditionally it is obtained
without proof as a generalization of the more special plane Giffith
criterion.
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Table 1. Mechanical data fitted by eqs (27) and (28). We deduced these
values from a fit over the whole failure envelope, whereas. The values of
P∗ (second column) are within a few MPa different from those reported in
table 4 of Wong et al. (1997) for his own data on effective grain crushing
pressure without differential stress.

Material P∗ Q∗ Pγ Porosity
(MPa) (MPa) (MPa)

1Sandstone Boise II 46 54 0 0.35
1Sandstone Adamswiller 200 188 0 0.23
1Sandstone Rothbach1 220 185 0 0.20
1Sandstone Kayenta 320 276 0 0.21
1Sandstone Darley Dale 380 300 0 0.15
1,2,3Sandstone Berea 400 334 0 0.21
4Sandstone Lance 950 530 70 0.075
5Limestone Solnhofen 570 618 40 0.03

1From Wong et al. (1997).
2From Khan et al. (1991).
3From Jamison & Teufel (1979).
4From Schock et al. (1973) reinterpreted in 5.
5From Baud et al. (2000).

The presence of Pγ in eq. (27) increases the sample resistance
to failure. The uniaxial compressive strength, C0, is often chosen
as a measure of rock strength. Replacing σ 1 = C0, σ 2 = σ 3 = 0
in eqs (16) and (17) implies that P = C0/3 and Q = C0, then by
solving eq. (27), one obtains

C0 = C

2

(
1 +

√
1 + 12

Pγ

C

)
, (29)

where

C = Q∗2

3P∗ = µm�0

f
. (30)

The presence of surface energy through the equivalent pressure Pγ

increases the strength of the sample above the value C0 = C .
In the previous fits, summarized in Table 1, we assumed that P∗

and Q∗ were independent, arbitrary parameters although they should
verify eqs (21) and (22). Eq. (21) suggests a K 0µm�0/φ dependence
of P∗. From Table 1, taking all the sandstone data together, we obtain
a reasonable fit with

P∗(MPa) = 65

φ
, (31)

with a large standard deviation of 84 MPa (see Fig. 4). This sug-
gests that the viscosity is roughly equal for all these samples that
have rather similar petrologies (∼70 per cent quartz, ∼15 per cent
feldspar and variable quantities of clay, mica, oxides, carbonates,
etc.).

More likely, the rheology of each sample is different and eq. (21)
should rather be used to estimate their viscosity µm . From Fig. 4, it is
clear that a φ−n dependence of P∗ with n ∼ 1.5 would give a better fit.
There is also a threshold in porosity near 37 per cent above which
sandstones become completely cohesionless (Jizba 1991; Vernik
et al. 1993). An estimate of µm as a function of porosity and grain
size can be found in Zhang et al. (1990).

Using eq. (26) the theory also indicates that(
P∗

Q∗

)2

= K0 f

3φ
, (32)

where the parameter K 0 is close to 1. Although we have never
claimed that f should be the same for each sample, we must at
least check that the data does not contradict the requirement that
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Figure 4. P∗ as a function of 1/φ. The dotted line corresponds to a slope
K 0µm�0 = 65 MPa.
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Figure 5. (P∗/Q∗)2 should be proportional to 1/φ according to eq. (32) if
the percentage f of deformational work that can be stored in making new
interfaces is independent of the samples. The experiments suggest that this
is the case with f ∼ 75 per cent for sandstones (dashed line).

f ≤ 1. Using the sandstone data of Table 1, Fig. 5 depicts (P∗/Q∗)2

as a function of 1/φ. We verify that for each sample, the parameter
f is lower than 1 and more surprisingly that all sandstones seem to
have the same f parameter of order 0.75 (dashed line), assuming
K 0 = 1. However, this value of f corresponds to the occurrence of
failure, i.e. at a specific dilation rate � = |�0|; in general, f is not
independent of � (see BRS2).

An independent lower bound for f can also be obtained through
eqs (29) and (30), which lead to

µ0�0 = f C ≤ f C0. (33)

The relation eq. (31) indicates that µ0�0 ∼ 65 MPa, while a large
compilation of sandstone compressive strengths (Vernik et al. 1993)
gives C0 ≤ 254 MPa. These values imply f ≥ 0.25, in agreement
with our estimate of f = 0.75.
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The data set from Baud et al. (2000) suggests that a much lower
value of f is appropriate for limestones. According to Table 1, f
deduced from eq. (32) is only 0.075. This implies that less defor-
mational work goes into making new voids (and thus more work is
dissipated) during deformation for limestones than for sandstones.

Assuming therefore that all samples have the same K 0 = 1 co-
efficients we conclude that all experiments follow the same failure
envelope

Q̃ = min(
√

P̃,
√

1 − P̃), (34)

and the same onset of dilation

Q̃ =
√

2P̃, (35)

where

P̃ = P + Pγ

P∗ (36)

Q̃ = Q
√

K0 f

P∗√3φ
. (37)

Fig. 6 shows that the theoretical eq. (34) and the normalized data
are in very good agreement. In this plot we use the same f = 0.75
partitioning coefficient for all sandstones and f = 0.075 for the
limestone. A slightly better agreement could have been obtained by
fitting all the f s separately.
For two samples of lower porosity, Lance and Solnhofen, the cohe-
sion pressure is non-zero (see Table 1). For these samples dilatant
cataclastic failure have been observed for shear stresses above the
onset of shear-induced compaction as predicted in Fig. 2. These ob-
servations are depicted in Fig. 6(b) and correspond to the few data
above the ogive-type curve. They roughly prolongate the line cor-
responding to the onset of dilation. Two other experimental data for
Lance sandstone at larger stresses have not been plotted for clarity
but are in the predicted direction ((P̃, Q̃) = (1.23, 2.3) and (1.55,
2.87)). Taking into account the fact that these samples went through
shear-enhanced compaction before reaching a domain of extension,
we think that the agreement between these difficult experiments and
our simplistic theory is still surprisingly good.

On the right of the onset of the dilation-onset curve, away from
the failure envelope, the rate of porosity change, �, should be given
by eq. (24). On the left, the dilation should be given by eq. (23).
However, it is quite difficult to compare these predictions of occur-
rences away from the failure envelope with experiments that mostly
record the failure event. Moreover, it is quite probable that our as-
sumption of purely Newtonian viscous matrix is too simplistic to
give precise predictions over the whole P–Q space.

4 C O N C L U S I O N

We have briefly developed the void limit of the two-phase equa-
tions that were proposed in BRS1. We defer to a companion pa-
per (Bercovici & Ricard 2003) for a precise discussion of how the
stresses and surface tension are distributed over the two phases, or
only over the matrix phase when the fluid phase becomes rigorously
inviscid.

Although our theory is based only on relatively simple first prin-
ciples, it predicts failure envelope curves that include both dilational
shear localization at low mean stress (confining pressure), and shear-
enhanced compaction at large mean stress, as well as the onset of
dilation that is a precursor to shear localization. The theory further
implies a failure criterion that generalizes the Murrell–Griffith rule
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Figure 6. (a) Theoretical failure envelope (solid line) compared with var-
ious normalized experiments with seven sandstones and one limestone. (b)
Theoretical onset of dilation (dashed line) compared with various normal-
ized experiments. The few points above the ogive curve (two stars for Lance
sandstone and four small squares for Solnhofen limestone) corresponds to
dilatant cataclastic failure that have been observed for shear stresses above
the onset of shear-induced compaction.

for shear-induced dilation. The same formalism also predicts that
even after the occurrence of shear-enhanced compaction at moderate
to low deviatoric stress (and high mean stress), dilation and shear
localization can also occur once the deviatoric stress is increased
sufficiently. In the end, we have applied our theory to the defor-
mation of low-cohesion materials such as porous sandstones and
predict behaviour very similar to that observed in the laboratory.
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