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S U M M A R Y
We present 2-D simulations of convection in the Earth’s mantle with temperature and damage-
dependent viscosity in a basally heated system. The equation governing the temporal evolution
of damage includes a source term for damage, a healing term and an advection term. A
systematic study of the influence of the different damage terms on the convection pattern
shows that: (1) at least four different convective regimes can be distinguished depending on
the size of the damage source term and (2) self-lubricating behaviour is possible only if the
advection term in the damage equation is small enough compared with the other terms. We also
demonstrate, that good plate-like behaviour in terms of (a) focused low-viscosity bands (LVB),
(b) homogeneous surface velocities within the plates and abrupt velocity jumps across the plate
boundaries and (c) asymmetric subduction, can be obtained with this kind of rheology, although
an increase in subduction asymmetry tends to make convection highly time-dependent.
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1 I N T RO D U C T I O N

Understanding the driving mechanisms associated with the motions
of the Earth’s major tectonic plates remains one of the fundamen-
tal questions in geophysics. Many mantle convection models have
been developed to explain the basic principles of terrestrial plate
tectonics, however, computer simulations usually have problems re-
producing important observed features such as the concentration of
deformation at plate boundaries, the existence of continuous asym-
metric subduction zones, or the poloidal:toroidal (i.e. divergent ver-
sus strike-slip) energy ratios. For a discussion of plate-like behaviour
in mantle convection models we refer to recent reviews (Bercovici
et al. 2000; Tackley 2000a,d; Bercovici 2003). Here we will address
only a few very recent studies, which we sort into two groups. The
first group consist of calculations that incorporate pseudo-plastic
yield-stress rheologies into the hydrodynamic equations. Trompert
& Hansen (1998) reported that this kind of rheology can lead to
highly episodic subduction behaviour, including homogeneous (i.e.
solid-body or plate-like) surface velocities and asymmetric sub-
duction during the ‘active’ episodes. However, convection in their
model seems to be more Venus- than Earth-like, since all cold and
high-viscosity material of a subducting plate rapidly vanishes into
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the deep mantle and the lithosphere has to redevelop during the
‘passive’ periods of the system. Using a similar rheology, Tackley
(2000b) found by varying the yield stress, that first-order plate-
like behaviour can be obtained only in ‘a narrow range of yield
strength, below which diffuse boundaries, and above which episodic
behaviour and eventually a rigid lid are observed’. The introduction
of a low-viscosity asthenosphere and melting improved those results
significantly (Tackley 2000c). Models in the second group use rhe-
ologies with the possibility for self-lubrication. A self-lubricating
rheology has a stress (σ ) versus strain rate (ε̇) curve, which is not
monotonically increasing, but has a maximum stress (σ max) and a
negative slope for ε̇ > ε̇max (Bercovici 1993, 1995; Tackley 1998).
Bercovici (1998) used a model, in which the viscosity depends on
an additional ‘damage’ parameter (in Bercovici’s paper the porosity
of the material), for which the temporal evolution is described by a
separate conservation equation. In the limit of a negligible advec-
tion term in this conservation equation, we obtain a self-lubricating
rheology (see below). Bercovici was able to show, that highly fo-
cused transform faults in a 2-D horizontal layer can be obtained
with this model. Tackley (2000c) later added Bercovici’s rheology
to his model (see above), but concluded that it has too much of
a damaging effect on oceanic plate dynamics, causing excessive
breakdown of plates into small segments. However, another feature
of Bercovici’s rheology is, that it is not ‘instantaneous’, but ‘history
dependent’. Because of the time dependence of the damage param-
eter, the material essentially ‘remembers’ its deformational history,
which is important, since the existence of long-lived weak zones
in the lithosphere is thought to influence plate tectonics (Gurnis
et al. 2000). It should be noted, however, that these simple damage
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theories are somewhat ad hoc; more sophisticated, first-principles-
based (and consequently more complicated) damage theories for
lithospheric shear-localization have been proposed more recently
(Bercovici et al. 2001a,b; Ricard et al. 2001; Ricard & Bercovici
2003; Bercovici & Ricard 2003).

In this article, a rheology similar to Bercovici’s is incorporated
into a 2-D mantle convection model, to investigate the possibili-
ties of this kind of rheology systematically. In contrast to Tackley’s
models, the damage parameter is the only parameter (except for
the temperature) to influence the viscosity. Since an important as-
pect of our investigations will be to look for symmetry breaking
in the convection pattern we will use bottom heating (the simplest
symmetrical heating mode) in our models. Internal heating might
be more Earth-like, but it imposes asymmetry between up- and
downwellings.

2 T H E M O D E L

The basic equations in our model are the usual hydrodynamic equa-
tions for a bottom-heated system within the Boussinesq approxi-
mation and with infinite Prandtl number. We present them in the
non-dimensional form used in Christensen & Harder (1991):

∇ · u = 0 (1)

−∇p + ∇ · (ηε̇) + RaT ẑ = 0 (2)

∂T

∂t
+ u · ∇T = ∇2T . (3)

Here u = (ux, uz) denotes the velocity vector, p the non-hydrostatic
pressure, T the temperature, η the viscosity and ε̇ is the strain rate
tensor defined as

ε̇i j = ∂ui

∂x j
+ ∂u j

∂xi
. (4)

The boundary conditions on the sidewalls are periodic; the upper
and lower boundary are assumed to be impermeable, free slip and
isothermal (i.e. uz = ∂2uz/∂ z2 = T + z − 1 = 0 at z = 0, 1). The
Rayleigh number for a bottom-heated system is defined as

Ra = ραg�T h3

η0κ
, (5)

where α is the thermal expansivity, g is the gravitational acceler-
ation, �T is the temperature drop over the box, h is the height
of the box, κ is the thermal diffusivity, ρ is the density and η0 is
a dimensional reference viscosity (see below). The dimensionless
viscosity η in our model depends on temperature T and an addi-
tional quantity d, termed the damage parameter (e.g. Lemaitre 1992;
Krajcinovic 1996; Lyakhovsky et al. 1997; Bercovici 1998; Tackley
2000a; Bercovici et al. 2001a)

η = 2

1 + dm
e−γ T , (6)

where m and γ are input parameters. The reference viscosity η0 used
in the definition of Ra is thus the viscosity at T = 0 and d = 1.

The damage parameter d is assumed to be time dependent:

∂d

∂t
+ u · ∇d = aσ ε̇ − beγ T d, (7)

where ε̇ and σ = ηε̇ denote the second invariants of the strain-rate

and stress tensors, defined as

σ =
(

1

2

∑
i, j

σ 2
i j

)1/2

. (8)

Eq. (7) is heuristic and its interpretation depends on what the damage
parameter represents physically. Bercovici (1998) connects d to the
porosity of the matrix mantle material, where the pores are assumed
to be filled with a lower-viscosity fluid (see also Bercovici et al.
2001a; Ricard & Bercovici 2002; Bercovici & Ricard 2003).

His damage equation is somewhat similar to ours and a motivation
for the sources and sinks of porosity is given in his 1998 paper. The
interpretation for the damage our model is based on assumes d
to be the inverse grain size of the material (Tackley 2000c). The
viscosity law eq. (6) simply represents the harmonic average of
a pure temperature-dependent viscosity ηT = e−γ T and a grain-
size dependent viscosity (diffusion creep) ηd = d−me−γ T . The form
of the sink term in eq. (7) is taken from investigations by Karato
(1983) on grain growth except it assumes a linear d dependence. The
input parameter b is the decay rate of d at T = 0. The source term
aσ ε̇ represents grain size reduction by dynamical recrystallization.
Although a simple dependence on the strain rate and the inverse of
the damage d (Braun et al. 1999) may be more obvious, we choose
the form of eq. (7) to make our results more comparable to those
of Tackley or Bercovici. What is important is not the exact form of
eqs (6) and (7), but that they are physically plausible and, moreover,
that they describe a rheology with the potential for self-lubricating
mechanisms. We will show in the next section that our rheology has
this potential.

3 B A S I C E F F E C T S O F T H E
DA M A G E R H E O L O G Y

In this section, we discuss several aspects of our damage rheology in
more detail. Our first point is to show that this rheology has the pos-
sibility for self-lubricating behaviour and for focused zones of high
strain and low viscosity. This part follows calculations performed for
similar rheologies by Bercovici (1996, 1998) and Tackley (1998).
We also note that the frequently used term ‘low-viscosity band’
describes a region with a significant viscosity reduction compared
with the corresponding pure temperature-dependent rheology, e.g.
regions bearing significant damage.

3.1 Simple analysis without advection

If we neglect the advection term in eq. (7) and assume that the system
will reach a steady state, we can then derive d as a function of ε̇ by
combining eqs (6) and (7) to obtain

d(1 + dm) = 2
a

b
η2

T ε̇2, (9)

where we recall that ηT = e−γ T . The solution d(ε̇) to this equation
can be substituted into eq. (6), and using σ = ηε̇, we can write an
effective constitutive law for stress σ as a function of strain rate ε̇.
For m < 1, the σ (ε̇) curve is similar to power-law rheologies with a
finite positive power-law exponent. The case for m = 1 represents
a yield stress rheology, as used for example by Trompert & Hansen
(1998); in this case the strain rate dependence of the stress can be
determined analytically:

σ = 4ηT ε̇

1 + [
1 + 4(2a/b)η2

T ε̇2
]1/2 , (10)
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Figure 1. σ (ε̇) curves in the limit of a vanishing advection term in the damage equation. Left: σ (ε̇) for m = 0.5, m = 1.0 and m = 2.0 with a/b = 10−6 fixed.
Right: σ (ε̇) for m = 2.0 fixed and a/b = 10−4, a/b = 10−5, a/b = 10−6.
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Figure 2. Maximum strain rate value versus m for our rheology in the limit
of a vanishing advection term in the damage equation. Three different values
from a/b are assumed. The smooth curves are approximations obtained from
eq. (12), the others represent the exact values for selected m.

where, again, ηT = e−γ T . As ε̇ → ∞ we obtain the yield stress
σ yield = (2 b/a)1/2. For m > 1 all curves have a negative slope for
strain rates larger than a special value ε̇max; this is often referred to
as a self-lubricating rheology (Bercovici 1996; 1998). Fig. 1 shows
examples of σ (ε̇) for typical values of the ratio a/b and different m.
The parameter γ is assumed to be zero. Self-lubricating rheologies
are difficult to handle in numerical simulations, because they tend
to produce infinitesimally narrow shear zones with zero viscosi-
ties and discontinuous material velocities if the strain rate exceeds
ε̇max. Nevertheless, the low-viscosity bands in this model have to be
properly resolved.

Fig. 2 shows the strain rate ε̇max for which the stress becomes
maximal (σ max) as a function of the parameter m for different values
of a/b. It can be seen that ε̇max is high for m close to unity and a/b
small, but decreases for increasing m or a/b. To better understand
this behaviour, we derive an analytical approximation of σ (ε̇) for all

m. Using eq. (9) and assuming d � 1 (such that η = d−mηT ), we
can solve for d for any value of m (we will, however, use the general
expression η = (1 + dm)−1ηT later; see below). It can be shown that
these assumptions will give a good approximate solution for ε̇ � 1
and ε̇ � 1, and a reasonable form of the function ε̇max(a, b, m, γ )
otherwise. We thus obtain

σ (ε̇) = 2ηT ε̇

1 + (
2 a

b η2
T ε̇2

)m/(m+1)
(11)

leading to

ε̇max =
(

b

2a

)1/2 (
1

ηT

) (
m + 1

m − 1

)(m+1)/2m

(12)

and

σmax =
(

2b

a

)1/2 (
m − 1

2m

) (
m + 1

m − 1

)(m+1)/2m

. (13)

From eq. (11) it can be seen that, for m < 1, σ (ε̇) is monotonically
increasing. A maximum value σ max is only obtained for m ≥ 1. The
decrease of ε̇max with increasing m is shown in eq. (12). It can also
be seen from eqs (11) and (12), that for m → ∞ a limiting value
for ε̇max is reached. Moreover, ε̇max also depends on the ratio a/b.
The general trend of this dependence is quite easy to understand: for
m > 1.0 we obtain self-lubricating behaviour only if the viscosity
in eq. (6) is significantly influenced by the term dm. However, d can
only be high, if the source term in eq. (7) is significant relative to
the sink term, which means a sufficiently high a/b ratio.

Another important effect is the temperature dependence of our
rheology. In the viscosity law, eq. (6), the temperature dependence
is responsible for the higher viscosity of the cold lithosphere. In
the damage equation, eq. (7), the temperature dependence of the
sink term allows high damage values to occur mostly in the cold
lithosphere. In the warmer model mantle the damage heals too fast
to produce much viscosity reduction.

3.2 Advection

So far, we have not discussed the time dependence of the damage
parameter and the advection term in eq. (7). The advection term, for
one, has a destructive effect on the low-viscosity bands. To illustrate
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this, we prescribe a special 2-D velocity field, neglect the temper-
ature dependence of the sink term in eq. (7) and in the viscosity
law eq. (6) (i.e. γ = 0) and finally calculate a steady-state solution
for the damage parameter from the simplified version of eq. (7) for
different values of a and b. Comparing these results will help us to
better understand the influence of the advection term in the damage
parameter equation.

We therefore employ an arbitrary solenoidal velocity field that
more or less models corner flow:

u = x̂
u0

1 + eλ(x−z)
− ẑ

u0

1 + eλ(z−x)
(14)

(where u0 and λ are arbitrary constants) as shown in Fig. 3. The local
change in the direction of the flow causes a diagonal high strain rate
zone in the box. The material flows obliquely to this high strain rate
zone and damage can therefore be advected away from where it is
produced. In situations where flow is parallel to a linear damage
zone (e.g. transform faults), the advection term in eq. (7) vanishes.

The second picture in Fig. 3 shows horizontal cuts through the
viscosity fields for a = 1.0, b = 50 000; a = 0.1, b = 5000 and
a = 0.01, b = 500. On the side of the box where the flow comes in,
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Figure 3. Top: viscosity (grey isolines, a = 0.1, b = 5 × 104) and prescribed
velocity field (arrows) for investigating the influence of advection in the
damage equation. Bottom: horizontal cuts through the viscosity fields for
three different sets of a and b. Parameters for the velocity field given in
eq. (14) are u0 = 1000 and λ = 100.

the viscosity is the same in all cases and no influence of the dam-
age parameter is visible. For high a and b the LVB is quite sharp,
deep and nearly symmetric (as expected in the limit of infinite a
and b). For decreasing a and b the asymmetry of the LVB increases,
in particular the slope of the downstream side decreases, the LVB
becomes wider and flatter and the position of the minimum viscos-
ity is advected away from the position of the maximal strain rate.
The damage parameter is clearly transported with the material. In
our 2-D calculations, we often see situations similar to this later
example, in which material movement is oblique to the LVB. So
the advection term is always relevant for our 2-D calculations; thus
the ratio a/b is not the only determining factor in our results (as in
eq. 12), the absolute values of a and b influence the width and depth
of the LVBs.

3.3 Influence of damage on velocity: a simple example

In the previous examples we simplified our model by eliminating the
coupling between the Stokes equations and the damage parameter
equation. Thus we were able to show that self-lubricating behaviour
can be expected, and how the advection term in the damage equation,
eq. (7), influences the viscosity. The full interaction between velocity
and damage is, however, not yet demonstrated; to do this, we must
solve the whole set of the governing equations. This is done here for
a simple example showing the basics of the evolution of a LVB. We
choose our model parameters as follows: Ra = 104, γ = ln(103) (as
throughout the paper, but which is really the lower limit of realistic
viscosity variability), a = 0.04, b = 104 and m = 2. The result will
be a steady state with little influence from the advection term. We
initiate the calculation with a temperature field obtained from the
corresponding isoviscous calculation and d = 1.0 everywhere.

Fig. 4 shows the viscosity fields at the beginning of the calcu-
lation, after a short time and the final steady-state viscosity. Also
presented are the horizontal velocity fields corresponding to the first
two viscosities. Finally, the horizontal surface velocity for all cases
is shown. It can be seen, that a ‘v’-shaped LVB evolves above the
downwelling, while the velocity field tends to become a ‘corner-
flow’ similar to that of the second example in the last section. A
broader zone of viscosity reduction can also be seen above the up-
welling, although it is much less developed than above the down-
welling. The surface velocity between these two LVBs tends to be-
come increasingly constant and plate-like. As we will see later, this
example is quite typical. Although the shape, sharpness and depth
of the low-viscosity zones depend on the values of m and a (with
a/b constant) and the asymmetry of the system depends on a/b
(with b constant), these general plate-like features remain visible in
all calculations with significant damage.

4 N U M E R I C A L A P P ROA C H
A N D A N A LY S I S M E T H O D S

The continuity and Stokes equations are discretized using a finite-
volume method and solved with the multigrid algorithm described
in Auth & Harder (1999). The temporal discretizations of the energy
and damage equations use a Crank–Nicolson scheme, and for the
spatial discretization of the advection term a non-linear method
suggested by Koren (1993) is used. A multigrid algorithm combined
with an iterative defect correction mechanism is used for the solution
of these equations (see Trompert & Hansen 1996). For more detailed
information concerning the numerical solutions see Auth (2001).

Our model contains several parameters: the box aspect ratio, the
Rayleigh number (Ra), the temperature dependence of the viscosity
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Figure 4. Example for the influence of damage. First row: viscosity and horizontal velocity for a calculation with a pure temperature-dependent viscosity
(Ra = 104, γ = ln 103). The corresponding temperature field is used as an initial condition for a calculation with damage-dependent rheology (a = 0.04, b =
104, m = 2.0, Ra = 104, γ = ln 103, d init ≡ 1.0). Second row: viscosity and horizontal velocity for the damage-dependent rheology at time =1.561 63 × 10−4.
Third row left: steady-state viscosity field for the damage-dependent rheology. Right: surface velocity corresponding to the three viscosity fields.

and of the healing term in the damage equation (γ ), the exponent of
the damage parameter in the viscosity law (m) and the magnitude of
the damage source and sink terms (a and b). To reduce the number
of parameters, we fix the aspect ratio to 2 : 1, γ = ln (103) and
Ra = 104. The Rayleigh number is scaled with the surface viscosity
η0(T = 0, d = 1); a viscosity scale given by η at a typical mantle tem-
perature of 1500 ◦C (or 0.5 in non-dimensional quantities), as done
by several other authors, would result in an effective Rayleigh num-
ber of around 3 × 105. An overview of our calculations is given in
Tables 1 and 2. All simulations are extended long enough to become
independent of their initial conditions (T init and d init). Some of our
results will contain very localized low-viscosity bands. From resolu-
tion tests we know that the results become independent of resolution
if at least five gridpoints sample each LVB in each spatial direction.
The results presented here fulfil this criterion, unless stated explic-
itly otherwise. A cut-off of the viscosity field is never performed.
Our principal goal, as described in the introduction, is to improve
the ‘plate-like behaviour’ in free mantle convection simulations. As-
pects of plate tectonics on the Earth’s surface include homogeneous
plate velocities, focused deformation, asymmetric subduction and
strike-slip faults. Thus an assessment of our (2-D) calculations ac-
cording to the following questions is warranted: do we see localized
LVBs? Do we see a surface moving with uniform velocity in large
areas? Do we see symmetry breaking in subduction behaviour? To

measure the homogeneity of the surface velocity during the calcu-
lation, we plot the relative number of ‘plate points’ over time. We
define a gridpoint on the surface to be a plate point, if the deriva-
tive of its horizontal velocity is at least a thousand times smaller
than the maximum derivative of the horizontal surface velocity. The
asymmetry of subduction during a calculation can be measured by
plotting the horizontally averaged horizontal velocity at a particu-
lar depth versus time. Since the horizontal velocity averaged over
the whole domain is designed to vanish (given periodic boundary
conditions) the line-averaged horizontal velocity should always be
zero for a perfectly symmetric convection pattern. We will use the
velocity averages at depth z = 0.25 and 0.75.

5 B A S I C R E S U LT S

The goal of the following part of this paper is to present the changes
in the convection pattern and the plate-like behaviour in our sim-
ulations due to variations of single input parameters. This is done
in four series, varying a (series A), a and b simultaneously (series
AB), and finally varying m (two series, M0 and M1). The quality of
the plate-like behaviour is judged in terms of focused LVBs, solid-
body-like homogeneous surface velocities and subduction-like
symmetry breaking in downwellings. An overview of these calcu-
lations is given in Table 1. We refer to the different calculations (or
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Table 1. Summary of cases discussed in Section 5.

Series Case no a b m Regime

A0 1 0.033 5 × 104 1.1 I
2 0.10 5 × 104 1.1 II
3 1.00 5 × 104 1.1 IIIa
4 5.00 5 × 104 1.1 IIIa
5 10.0 5 × 104 1.1 IV

AB 1 0.01 5 × 102 1.1 IIIa
2 0.10 5 × 103 1.1 IIIa
3 1.00 5 × 104 1.1 IIIa
4 10.0 5 × 105 1.1 IIIa
5 20.0 1 × 106 1.1 IV

M0 1 1.00 5 × 104 0.7 IIIa
2 1.00 5 × 104 1.1 IIIa
3 1.00 5 × 104 1.3 IIIa
4 1.00 5 × 104 1.4 IIIb
5 1.00 5 × 104 1.5 IIIb
6 1.00 5 × 104 2.0 IIIb

M1 1 0.04 2 × 103 1.1 IIIa
2 0.04 2 × 103 2.0 IIIa
3 0.04 2 × 103 3.0 IIIb
4 0.04 2 × 103 4.0 IIIb

Note that the same parameter combinations can have more than one
case number, depending on the series in which it is included (e.g.
case A0-3 is identical to case AB-3 and case M0-2).

Table 2. Summary of cases discussed in Section 6.

Series Case no a b m Regime

A1 1 0.04 2 × 103 2.0 IIIa
2 0.08 2 × 103 2.0 IIIa
3 0.12 2 × 103 2.0 IV
4 0.16 2 × 103 2.0 IV
5 0.20 2 × 103 2.0 IV

A2 1 0.008 1 × 104 2.0 I
2 0.016 1 × 104 2.0 II
3 0.04 1 × 104 2.0 IIIb
4 0.20 1 × 104 2.0 IIIb
5 0.40 1 × 104 2.0 IIIb
6 0.50 1 × 104 2.0 IV

A3 1 1.00 5 × 104 1.5 IIIb
2 4.00 5 × 104 1.5 IIIb
3 5.00 5 × 104 1.5 IV

cases) in the following way: ‘name of the series the case belongs
to’-‘case number in this series’. For example ‘A1-2’ is the second
case in series A1. The same case can have different names if it is
included in different series. For example, the labels A0-3, AB-3 and
M0-2 all refer to the same case.

5.1 Variation of a, series A0

In the first series of numerical experiments (A0), the influence of
the damage source term parameter a shall be tested. We fix the
healing term parameter to b = 5 × 104 and the exponent of the
damage parameter in the viscosity law eq. (6) to m = 1.1, which
is greater than unity to allow self-lubricating behaviour (see the
analysis in Section 3). The parameter b is chosen such that the
damage parameter d in material moving with a non-dimensional
velocity of 1000 (corresponding to around 1 cm yr−1) would decay
to d/e within a distance equal to 1/50th of the length of the box
(assuming no source terms for d). For the size of the parameter a we
follow the results of Tackley (1998), who used a rheology similar to

the asymptotic one in eq. (11), and found an a/b ratio of 10−5 to be
adequate for producing LVBs. Here we present results for a = 0.1,
1.0 and 10.0. For a ≈ 0.033 the source term in eq. (7) is too small
to allow d to become significant and the system tends to a steady
state with only temperature-dependent viscosity and no plate-like
behaviour.

For a = 0.1 we observe episodic behaviour. For long periods
convective flow shows very weak upwellings or downwellings, cold
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Figure 5. Series A0. From top to bottom: viscosities for cases A0-2 (a =
0.1), A0-3 (a = 1.0) and A0-5 (a = 10.0). Constant parameters: b = 5 ×
104, m = 1.1. Last picture: surface velocity for the three cases.
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Figure 6. Maximum damage versus time for case A0-2 (a = 0.1, b = 5 ×
104, m = 1.1).

material is accumulated in the upper thermal boundary layer and
the damage is negligible. When the unstable density stratification
collapses, fast upwellings and downwellings are produced, accom-
panied by a strong increase in the damage parameter (Figs 5 and
6). A tendency toward plate-like behaviour is only obtained dur-
ing periods of fast subduction. We find little asymmetry in the up-
wellings and downwellings, but the surface velocity of the material
clearly differs from a sinusoid, i.e. it hardly varies in regions be-
tween the upwelling and downwelling, but it changes very rapidly
above the downwelling. The change above the upwelling is less
abrupt.

The case a = 1.0 produces a steady state with constant influence
of the damage parameter; Fig. 5 clearly shows the viscosity reduc-
tion above the downwelling for this case. A sharp change in the
surface velocity above the downwelling is obtained and a slightly
broader change above the upwelling. Between these zones the veloc-
ity hardly varies. However, essentially no asymmetry can be found
in upwelling or downwelling.

Although we obtain time-dependent behaviour for a = 10.0, gen-
eral features of the convection pattern are stable: the influence of
the damage parameter remains significant in large parts of the box.
Above the upwelling a broad reduction of viscosity can be seen
and the LVB in the downwelling region is more extensive than for
a = 1.0 and covers the downwelling like a lens. Fig. 5 shows that in
this case both the upwelling and downwelling have an asymmetric
structure. The convection in the cell in the middle of the box is much
more vigorous than in the adjacent cell (see the surface velocity) and
the averaged horizontal velocities at depth z = 0.25 and 0.75 plotted
in Fig. 7 demonstrate that this behaviour oscillates in time. Since the
lithosphere is weakened over a broad zone above the upwelling the
surface velocity change above the upwelling becomes broader than,
for example, in the case a = 1.0. Nevertheless, the surface velocity
change above the downwelling remains very sharp and the velocity
variations between upwelling and downwelling are less gradual than
for smaller a.

5.2 Simultaneous variation of a and b, series AB

In a second series of experiments (AB) we focus on the influence of
the advection term. Thus we choose m = 1.1, a/b = 2 × 10−5 and
a and b are varied simultaneously using a = 0.01, 0.1, 1, 10, 20.

0 0.005 0.01 0.015 0.02 0.025
−1000

−800

−600

−400

−200

0

200

400

600

800

1000
a=10.0, b=5*10, m=1.14

Time

av
er

ag
ed

 h
or

iz
on

ta
l v

el
oc

ity
 (

z=
0.

75
 a

nd
 z

=
0.

25
)

Figure 7. Velocity in the x-direction horizontally averaged for depths z =
0.25 and 0.75 versus time for case A0-5 (a = 10.0, b = 5 × 104, m = 1.1).

We observe, that the steady-state viscosity fields for the different
a and b values differ significantly from each other only above the
downwelling (Fig. 8).

For a = 0.01 we see an extended LVB inside which the maximum
value of the damage parameter d is around 30 and the maximum
strain rate is ε̇calc ≈ 14 000. In the next three cases the extent of
the low-viscosity zone is reduced relative to the a = 0.01 case and
the maximum value for d is increased to approximately 70 (ε̇calc ≈
13500). The shape of the LVB changes from a linear structure for
a = 0.1 to a more ‘v’-like structure for higher a.

The case a = 20 however, is different. It is not only weakly time
dependent, but also shows focused LVBs with lower viscosity than
are obtained in the other cases. Instead of one extended ‘v’-shaped
LVB, there are a few smaller weak zones that are parallel to or
crossing one another. The maximum value for the damage parameter
in the subduction zone increases to around 240 and ε̇calc ≈ 63 000.

Despite the differences in the LVBs the surface velocity in all
cases is nearly identical except that the velocity variation above the
downwelling is more inhomogeneous in the last case (AB-5) and
occurs in small jumps, forming ‘microplates’ in between (Fig. 8).
No significant asymmetry in the downwelling is visible in any of
the cases.

However, two points can be learned from this series: (1) a good
quantity to determine the boundary between non-self-lubricating
and self-lubricating behaviour is the maximum strain rate (ε̇calc).
It appears to be nearly constant in the non-self-lubricating regime
but increases significantly when self-lubricating occurs. (2) Be-
cause of the influence of the advection term in the damage equation
the strain rate that has to be exceeded before self-lubricating oc-
curs (ε̇sl(a, b, m)) is much higher than the corresponding strain rate
(ε̇max(a/b, m)) obtained from our analysis without advection. In this
series we do not obtain self-lubricating for ε̇calc ≈ 14 000, although
ε̇max ≈ 2000 can be assumed from Fig. 2.

5.3 Variation of m, series M0

The last parameter we investigate is the exponent of the damage
parameter in the viscosity law, m. For a = 1.0 and b = 5 × 104

we present the cases m = 0.7, 1.1, 1.3, 1.4, 1.5, 2.0 in Fig. 9. For
m = 0.7 and 1.1 we obtain a steady-state solution with broad
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Figure 8. Left-hand column: viscosities for series AB. From top to bottom: case AB-1 (a = 0.01, b = 5 × 102), downwellings for cases AB-1 (a = 0.01, b =
5 × 102), AB-2 (a = 0.1, b = 5 × 103), AB-3 (a = 1.0, b = 5 × 104), AB-4 (a = 10.0, b = 5 × 105), and AB-5 (a = 20.0, b = 1 × 106), constant parameter:
m = 1.1. Right-hand column: surface velocity for cases AB-3 and AB-5.

LVBs above and below the downwelling and ε̇calc ≈ 13 500. Case
M0-3 (m = 1.3) has a weak periodic time dependence but similar
LVBs and ε̇calc ≈ 14 200. For case M0-4 (m = 1.4) we see first
indications for self-lubricating behaviour: the broad LVBs at the
downwelling begin to focus to a few connected narrow LVBs with
significant lower viscosity than for case M0-3. A similar process

starts above the upwelling, although this is hardly visible in Fig. 9.
The maximum strain rate reaches values up to ε̇calc ≈ 24 500. For
a further increase in m the LVBs continue to focus, their viscosity
further decreases and ε̇calc ≈ 55 000 for m = 1.5 and ε̇calc ≈ 315 000
for m = 2.0 are obtained. From the magnified parts of case M0-6
(m = 2.0) two interesting features can be seen. (1) All LVBs for
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Figure 9. Viscosities for series M0. Left-hand column from top to bottom:
cases with m = 0.7, 1.1, 1.3, 1.4, 1.5, 2.0, constant parameters: a = 1.0,
b = 5 × 104. Right-hand column: top of the upwelling, top and bottom of
the downwelling for m = 2.0, surface velocities for m = 0.7, 1.1, 2.0.

m < 2.0 are orientated in an angle of 45◦ to the surface. However, for
m = 2.0 a few LVBs in the downwelling also show angles around
60◦. (2) The LVBs at the bottom of the downwelling are asymmetric
for all calculations with m > 1.3. This asymmetry is a stable fea-
ture, although the orientation of the asymmetry can change in time.
However, we do not want to overinterpret the case M0-6, because
parts of the narrowest LVBs are resolved by fewer than five grid-
points.

The focusing of the LVBs above the upwelling and downwelling
leads to more discontinuous variations in the surface velocity and
the development of microplates. Although the cases with m > 1.3
are time dependent the periods of asymmetry are short and this
asymmetry is not well developed.

The result that the transition between simulations without and
with self-focusing LVBs occurs at m ≈ 1.4 is somewhat unex-
pected. From our previous analysis (see eq. 10) one might think,
that this transition occurs at m = 1.0, since this is the value, where
this analysis predicts a change in the material behaviour and since
ε̇calc ≈ 13 500 is high enough to allow this change (see Fig. 2). How-
ever, we have seen in the previous section that the absolute values of
a and b are not high enough to produce self-focusing behaviour at
m = 1.1. So why does the transition to self-focusing behaviour hap-
pen at higher m? Although the advection term in our simple analysis
is neglected (Section 3.1), the general dependence of ε̇max(m) (e.g.
eq. 12) seems to be correct: ε̇sl decreases with increasing m. So self-
focusing cannot occur at m = 1.1, because the advection of damage
is too strong, but it can occur at m = 1.4. In short, self-focusing
occurs at higher than expected m to adjust for the influence of
advection.

5.4 Variation of m, series M1

In series M0 the values of a and b are quite high. Thus the influence
of advection in the damage equation is low and the structures of
the LVBs above the upwelling and downwelling are more ‘v’-like
than linear, even for small m. Of course increasing m produces self-
focusing of the LVBs, but their general ‘v’ shape is not changed.

In our second series M1 we will show that for lower values of a
and b an increase of m is still able to change the structure of the LVBs
from more linear to more ‘v’-shaped. We now choose a = 0.04 and
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Figure 10. Viscosities and surface velocities for series M1. Left-hand column, from top to bottom: cases M1-1 (m = 1.1), M1-2 (m = 2.0), M1-3 (m = 3.0),
M1-4 (m = 4.0). Right-hand column: surface velocities for cases M1-1 and M1-4. Constant parameters: a = 0.04 and b = 1 × 103

b = 2000. The results for m = 1.1, 2.0, 3.0, 4.0 show significant
changes in the viscosity field (Fig. 10).

For m = 1.1 and 2.0 the LVBs above the downwelling are linear
and we have a horizontally extended LVB above the upwelling;
however, there are no LVBs on the bottom of the box.

The cases with m = 3.0 and 4.0 in contrast show ‘v’-shaped LVBs
above the downwelling, an additional LVB beneath it and indications
of a focused LVB above the upwelling. Even so the influence of the
small a and b values remain visible. The ‘v’-shaped LVBs above
the downwelling are arranged one beneath the other, while they are
side by side and connected for large a and b values. To explain this
change in the convection pattern with increased m we note that m
is not only included in the viscosity law, but also in the source term
of the damage equation, eq. (7), which appears as a 2

1+dm e−γ T ε̇2. If
a calculation is initiated with a linear damage structure (like that
for m = 1.1, for example) the positions for the maximum d and the
maximum ε̇ values are not identical, since d is maximum close to the
middle of the subduction zone and ε̇ is maximum where the velocity
changes most abruptly. Thus the damage parameter d will increase
much more in the regions of high ε̇ than in the regions of already
high d. This effect obviously becomes stronger, as m increases. So an
increase in m acts against advection and tends to pin the high damage
zones to the high strain-rate zones. For each m value, a balance
is reached between pure linear structures (influenced primarily by

advection) and pure ‘v’ structures (influenced by strain rate). Even
in the more linear structure for m = 2.0 a ‘v’ pattern is visible, and
even for 4.0 the ‘v’ structures are arranged one beneath another.

As with our results in varying a and b simultaneously, the changes
in the ‘plate-like’ behaviour of the system are not significant. The
surface velocity is similar for all cases and no microplates occur.
Although m = 3.0 and 4.0 produce time-dependent behaviour the
asymmetry in the subduction zone is negligible.

5.5 Summary of the parameter variations

The increase of a with fixed b and m improves the asymmetry of the
system, but values that are too high can weaken large parts of the
lithosphere, thereby reducing the areas of plate-like homogeneous
surface velocities. The absolute values of a and b, for a/b and m
constant, influence the shape of the LVBs above the upwelling or
downwelling material. ‘Lower’ values of a lead to linear structures
and ‘higher’ values to ‘v’ structures. Temporary asymmetry and
very focused LVBs are obtained, when the system enters the self-
lubrication regime. What is meant by ‘lower’ and ‘higher’ values
of a and b depends on the parameter m; m therefore can be used to
control whether a calculation is in the self-lubricating regime and
to obtain a suitable focusing of the LVBs.
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6 A DVA N C E D R E S U LT S

6.1 Motivation

In the last section we discussed how the input parameters of our
model influence the structure of convective flow. In this section we
will use these results to optimize the plate-like behaviour of our sim-
ulations by choosing appropriate parameter values. Unfortunately,
many potentially interesting cases cannot be calculated because of
numerical difficulties. For high values of a, b and m the LVB are too
small and their viscosity is too low to ensure their proper resolu-
tion and a sufficient convergence of our numerical algorithm. Thus
we have to find a middle course between the optimum plate-like
behaviour and our numerical capabilities.

Our new series are mainly motivated by the following two re-
sults: (1) for m > 1.0 high values of a and b can produce very
focused LVBs, but this drastically decreases the convergence of our
numerical methods. (2) Asymmetry of subduction improves when
a is increased. Therefore, our plan is to consider cases that have a
good potential for self-lubrication (sufficiently high m), but are easy
to compute (a and b not too high), and then to slowly increase the
asymmetry in the convective structure (increase a).
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Figure 11. Viscosities and surface velocities for case A1-3 (a = 0.12, b = 2 × 103, m = 2) at different times. Left-hand column: viscosities from top to
bottom: at time = 0.009 078 74 and at time = 0.009 263 06 (both at the end of a cycle), at time = 0.011 065 235 and at time = 0.011 249 56 (both at the
beginning of the next cycle). Right-hand column: surface velocities at times for which the amount of damage is either large or relatively small, as indicated in
the figure.

Our first series A1 will start with case A1-1: a = 0.04, b = 2000
and m = 2.0 (identical to case M0-2). Since one of our problems with
this series will be the focusing of the LVBs above the upwelling the
next series A2 will use higher values for a and b. A further increase
of a and b is possible numerically only if m is lowered to m = 1.5
(see the discussion of series M0). The start of series A3 is therefore
A3-1 (equal to M0-5): a = 1.0, b = 5 × 104, m = 1, 5.

6.2 Series A1

Starting with A1-1 (a = 0.04) we present cases A1-1 to A1-5, with
a = 0.04, 0.08, 0.12, 0.16, 0.20, respectively. The steady state we
obtain for a = 0.04 in case A1-1 was already shown in Fig. 10 (case
M1-2). Case A1-2 (a = 0.08) produces a similar steady state and is
therefore not presented here.

For case A1-3 (a = 0.12) the convective structure of the system
changes significantly and episodic behaviour is obtained as shown
in Fig. 12. In addition, Fig. 11 presents snapshots from the evolu-
tion of the viscosity field between two (temporal) maxima of dmax.
Figs 12 and 11 eludicate the reason for the episodic behaviour: when
only a little material is still subducted, a LVB is present above the
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Figure 12. Maximum damage over time for case A1-3 (a = 0.12, b = 2000,
m = 2).

subduction zone in the region of high strain rate (see the second
picture in Fig. 11). After the first cold subducting material reaches
the bottom, LVBs develop there, too, and if the parameter a is high
enough, the shear stresses on the sides of the subducting material
can be high enough to connect the top and bottom LVB (first, third
and fourth pictures in Fig. 11). The coupling between the subduct-
ing material and the surrounding material decreases, the subduc-
tion becomes faster, causing higher shear stresses on the sides of
the subduction zone, the viscosity further decreases, etc. Finally,
the subducting material is so fast and the coupling to the mate-
rial on the top of the box is so weak that the slab breaks (see the
second picture in Fig. 11). The rest of the old slab sinks to the bot-
tom of the box, a new subduction starts again on the same position
immediately.

How ‘plate-like’ is the behaviour of the material in this model?
Although the LVB above the downwelling has a more linear structure
(comparatively low a and b values) the subduction zone is clearly
asymmetric (Fig. 11). The plate-like quality of the surface velocity,
however, is quite variable. Immediately after the fast subduction of
large amounts of cold material into the mantle, the surface material
in a large region around the upwelling is hot and has a high damage
parameter, so it is quite weak and does not move with homogeneous
velocity (Fig. 11). Because of the lower velocity (less slab pull) in the
box the region of hot and highly damaged material on the surface
diminishes in the following time and the material becomes more
rigid in larger parts of the box. When the velocity and the damage
parameter start to increase again, those parts subduct with homo-
geneous velocity and the weak zones above the upwelling grow up
again. These variations in the homogeneity of surface velocity can
be seen from plotting the relative number of plate points versus time
in Fig. 13: we find nearly 15 per cent of the surface gridpoints to
be plate points during periods of fast subduction and possibly 1 per
cent otherwise. It is significant that this kind of episodic behaviour
is completely different from what is observed for case A0-1; in par-
ticular, subduction always occurs here, although the velocity of the
subducting material is variable. This case is, in fact, more compara-
ble to case A0-3, although convection in A0-3 is less episodic. This
is primarily because the viscosity is lower in the LVBs in case A0-3
and these zones are less focused so that the decoupling from the rest
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Figure 13. Relative number of plate points for case A1-3 (a = 0.12, b =
2000, m = 2).

of the mantle is less effective. Secondly, the weakening of the slab
on the top of the box is less intense in A0-3 than in A1-3.

Although increasing a in A1-1 to A1-3 enhances the asymmetry
of subduction, the convective behaviour becomes episodic and the
surface velocity inhomogeneous during the periods where there is
a broad LVB above the upwelling.

For case A1-4 (a = 0.16) we obtain episodic behaviour similar
to that for case A1-3 (a = 0.12), except it is more extreme. The
peaks in the root-mean-square velocity can reach values up to 104

(which corresponds to 10 cm yr−1 and is around seven times more
than the value for A1-3), the maximum damage can come up to
200 (compared with 100 for A1-3), the differences in the vigour of
convection in the two different cells increase. It is significant that
we see some focusing of the LVBs on the top and on one side of
the upwelling at least during some of the episodic events (shown for
the fourth event in Fig. 14, although more significant for the sec-
ond event). Therefore, the surface velocity changes more abruptly
above the upwelling than in case A1-3, although the LVB above the
upwelling is still extended.

When a = 0.2 (case A1-5) the root-mean-square velocity in-
creases to peak values around 2 × 104, and the maximum damage
parameter increases to around 240. The differences in the vigour of
convection are apparent in Fig. 15. Compared with the fast move-
ment of material in the ‘active’ cell, the convection in the centre cell
is quite weak. Nevertheless, the root-mean-square velocity within
the centre cell has approximately the same amount as in cases with
much lower a (case A1-1, for example). Corresponding to this sit-
uation the asymmetry of the subduction is very high and mostly
material from the ‘active’ cell is subducted. In contrast to cases
with lower values of a, a significant asymmetry is also visible in the
upwelling. The LVB above the upwelling is much more focused now
than in the previous cases. Accordingly the changes in the surface
velocity above the upwelling and the downwelling are both very
sharp and the velocity through much of the region between them is
very homogeneous.

6.3 Series A2

Our major problem in series A1 is the broad LVB above the up-
welling. To obtain more focused LVBs the a and b values for our
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Figure 14. Temperature (top), viscosity (middle) and surface velocity (bot-
tom) for case A1-4 (a = 0.16, b = 2 × 103, m = 2).

new start case A2-4 (cases A2-1/2/3 are not presented in this article)
are increased by a factor of 5 compared with case A1-1. A typical
viscosity field and the corresponding surface velocity for case A2-
4 are shown in Fig. 16. The structure of the LVBs is already very
similar to the case M0-6 (a and b increased by another factor of 5;
see Fig. 9) except that the zones are broader and the viscosity is not
that low, which enables us to perform those calculations with few
resolution problems (small parts of the ‘v’ structure directly above
the upwelling are sampled only by three gridpoints).

We now increase a to 0.4 (case A2-5) and 0.5 (case A2-6). A2-5
(not shown here) produces a similar behaviour to A2-4 except that
the temporal variation of the damage parameter field is a little higher.
For A2-6 we obtain episodic behaviour again; as in case A1-3 we see
a sudden increase in the values for the root-mean-square velocity
and the damage parameter; moreover, convection is more vigorous
in one cell than in the other one and a lens-shaped LVB coats the
downwelling (see Fig. 17). A LVB around the upwelling, however, is
not visible. Two differences between cases A1-3 and A2-6 are signif-
icant: in case A1-3 the LVB on the top of the downwelling is always

nearly linear. Also the asymmetry develops a little deeper inside the
subduction zone. However, in case A2-6, the subduction asymmetry
is clearly visible at the surface, too. The temperature field (Fig. 17)
shows subduction with an angle of around 60◦ to the surface. The
second important feature is the LVB above the upwelling. Although
this zone becomes broader in case A2-6 compared with case A2-4,
the focused ‘v’-shaped LVBs survive and the change in the surface
velocity is not that homogeneous as it is in case A1-3 (Fig. 17). In
fact, the surface velocity changes in a lot of small little jumps and
microplates are developed. A further increase of a might be able to
improve the plate-like behaviour as in previous examples, unfortu-
nately those calculations are computationally beyond our means.

6.4 Series A3

The parameters a and b can be further increased simultaneously if
we decrease m back to m = 1.5. Starting from case A3-1 (identical
to case M0-5) we first increase a to 4.0 (case A3-2) and then to
5.0 (case A3-3). Case A3-2 gives us a time-dependent but non-
episodic result similar to the starting case, the viscosity in the LVBs
is lower and the zones are more extended. The result for case A3-3
(Fig. 18) is similar to case A2-6. Therefore, the LVBs above the
upwelling can be further focused (compared with case A2-6) and
this focusing remains stable during the whole episodic convection.
Thus the surface velocity changes in a more plate-like way here, as
well.

7 S U M M A RY A N D D I S C U S S I O N

In this section we summarize and organize our results according to
the influence of the different model input parameters, we discuss
how plate-like our simulations are and finally we compare our re-
sults with other investigations. To remind the reader, the important
parameters varied in this study are a, which represents the magni-
tude of damage caused by deformational work; b controls the loss
of damage zones by healing; and m controls the dependence of vis-
cosity on damage (which is necessary for there to be a feedback
between the mechanical equations and damage evolution).

7.1 Summary of results

7.1.1 Influence of the parameter a

To facilitate our discussion, we classify our results in terms of pa-
rameter a in different regimes. We choose this classification, because
the variation of a has the most significant influence on the convec-
tive system. For b and m fixed, at least four different regimes of
convection can be distinguished; in order of increasing a (relative
to a given b) these are as follows.

Regime I. Calculations in this regime show no significant differ-
ences with calculations using only a temperature-dependent rheol-
ogy.

Regime II. In this regime, episodic convection is obtained and
damage influences the circulation only during episodes of strong
subduction.

Regime III. Convection in this regime either reaches a steady state
or is weakly time dependent but with a stable convection pattern.
The influence of damage is nearly permanent.

Regime IV. Episodic behaviour ensues again. When a down-
welling slab is sufficiently subducted, the entire downwelling is
coated in LVBs. This results in very fast downwellings, primar-
ily because the subducting material is decoupled from the rest of the
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Figure 15. Case A1-5 (a = 0.2, b = 2 × 103, m = 2). Left-hand column, top to bottom: temperature, viscosity, horizontal and vertical velocities. Right-hand
column: surface velocity.

mantle. Episodicity itself results from the slab periodically detach-
ing from the upper thermal boundary layer.

An explicit specification of the a values for the boundaries be-
tween the different regimes is not presented here, since these values
depend on b and m. The computational effort to calculate them for
a significant number of b and m would be much too high. How-
ever, series A0 and A2 (Tables 1 and 2) might give an idea con-
cerning the boundaries for at least two values of m. Although the
b values are different in both series, the results are comparable,
since for a fixed value of m the a/b values of the regime bound-
aries are only weakly variable in the parameter space we investi-
gate here and can therefore be assumed to be constant to a good
approximation.

7.1.2 Influence of advection and the parameter m

We have shown that the advection of damage significantly influences
the convective structures of our system. For cases with low absolute
values of a and b (high advection), the LVB are linear; higher values
of a and b produce ‘v’-shaped LVBs and finally self-focusing of
these zones (m > 1.0 assumed). Since the transition from non-self-
focusing to self-focusing behaviour is very important, we want to
include it in our regime classification. The non-self-focusing part
of, for example, regime III is therefore called subregime IIIa; the
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Figure 16. Viscosity (top) and surface velocity (bottom) for case A2-4
(a = 0.2, b = 1 × 104, m = 2).
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Figure 17. Case A2-6 (a = 0.5, b = 1 × 104, m = 2). Left-hand column, from top to bottom: temperature, full viscosity field and close up of the near-surface
viscosity field above the hot upwelling. Right-hand column: surface velocity.
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Figure 18. Case A3-3 (a = 5, b = 5 × 104, m = 1.5). Left-hand column, from top to bottom: temperature, full viscosity field and a close up of near-surface
viscosity field above the hot upwelling. Right-hand column: surface velocity.
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Figure 19. Illustration of the transition between subregimes IIIa and IIIb. Plotted are the time-averaged maximum values of the second strain rate invariant
over the a–m plane, in which the ratio a/b is kept constant at 2 × 10−5. Points and curves delineated by diamonds, squares, triangles and stars are for calculation
series with either increasing a or m that experience a sudden increase in maximum strain-rate. The boundary between the subregimes in the a–m plane is
approximated by the line with solid circles.

self-focusing part is thus subregime IIIb. In fact, regime III is the
only regime, in which we observe both non-self-focusing and self-
focusing behaviour. Our calculations in regime II always show non-
self-focusing behaviour and those in regime IV show self-focusing
behaviour.

Following our results in series AB and M0, the boundary between
subregimes IIIa and IIIb is determined using the time-averaged max-
imum of the second invariant of the strain rate tensor 〈ε̇〉. Fig. 19
shows 〈ε̇〉 over the a–m plane for a fixed a/b = 2 × 105 ratio. The
boundary between the subregimes was determined to be where 〈ε̇〉
increases suddenly between subregimes (going from IIIa to IIIb).
The explanation of the boundary curve between these subregimes
was, in fact, already given in our discussion of the influence of the
parameter m: an increase in m acts in principle against the advection
term in the damage parameter equation (see the section ‘Series M1’
for further discussion). If a and b are relatively large the advection
term in eq. (7) is less important, thus a lower value of m is suffi-
cient to obtain self-focusing behaviour. That the values of ε̇ for the
transition between subregimes IIIa and IIIb are much higher than ex-
pected from our simple analysis of the damage equation without the
advection term (see the section ‘Simple analysis without advection’)
demonstrates the significant influence of the advection of damage
for convective structures (see the section ‘Series AB’ for an extended
discussion).

7.1.3 Plate-like behaviour

With an evaluation of our regimes in terms of focused LVBs, homo-
geneous surface velocities and asymmetric subduction (plate-like
behaviour) we arrive at the following results.

(1) Regime I, with the lowest relative a shows no plate-like be-
haviour at all since little or no damage is present. The surface ve-
locity is nearly sinusoidal, which is thus of low plate-like quality or
‘plateness’ (Weinstein & Olson 1992).

(2) Regime II shows plate-like tendencies only during episodes
of strong subduction. Convection in this regime may be qualitatively
comparable to the results of Trompert & Hansen (1998), who ob-
served periods of strong subduction separated by periods with no
subduction for calculations with a yield stress rheology.

(3) The LVBs in subregime IIIa are present during the whole cal-
culation, but with elongated and linear shapes. The surface velocity
is usually homogeneous, but the transitions over the downwelling
and upwelling are quite diffuse. This is comparable to simulations
with common power-law rheologies using positive and finite power-
law exponents (see, for example, Christensen 1984). Keeping our
simple analysis (see eq. 11) in mind, the similarity between dam-
age and power-law rheologies is not surprising, because their σ (ε̇)
curves are similar before ε̇sl is reached (see Fig. 1). In subregime
IIIb, the LVBs are much more focused than in regime IIIa, and are
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more or less ‘v’-shaped. Such ‘v’ structures are also found in studies
of localization in compressive folding using power-law rheologies
with negative exponent (Montési & Zuber 2002). The surface veloc-
ity is much more homogeneous, with a few jumps over the upwelling
(microplates) and one or two big jumps over the downwelling. The
asymmetry of the subduction is usually not very developed.

(4) The appeal of regime IV is that subduction is usually asym-
metric. However, the subduction process is also episodic. This kind
of episodicity is not the same as in regime II, because here subduc-
tion never really stops, although the slab breaks off from the surface.
The differences in the surface velocities therefore occur because of
the different pull of the already subducted material on the rest of the
lithosphere. During episodes of strong slab pull the surface veloc-
ity is usually much too high. A non-dimensional velocity of 1000
in our calculations roughly corresponds to a real velocity of about
1 cm yr−1. So, compared with the velocity of the Earth’s plates,
non-dimensional velocities much higher than, say, 104 are unreal-
istic. In addition, the LVB above the upwelling can become very
diffuse during these episodes of strong slab pull, causing a very
unridge-like velocity change right there. This problem mostly oc-
curs for relatively low values for b, when regime IV is entered from
subregime IIIa.

7.2 Conclusion

In the end, this study shows that this kind of simple damage rheology
can produce very focused LVBs in or above upwellings and down-
wellings. For high a, b and m values these zones look very much like
conjugate shear zones, as observed in different normal and thrust
fault geological environments. Despite the very strong limitations in
the geometry of our models (e.g. 2-Dity) we have shown that asym-
metric subduction can occur using this kind of rheology. The angle of
subduction can be changed between 90◦ (symmetrical subduction)
and 45◦ by modifying the absolute values of a and b compared with
the advection term in eq. (7). We have also demonstrated that for
appropriate values of the input parameters the surface velocity can
be very homogeneous between up- and downwelling, with strongly
localized jumps in between.

From a physical perspective, the occurrence of LVBs is associated
with a strong feedback mechanism between focusing of deforma-
tion on damaged weak zones and the creation of damage by defor-
mational work (see Bercovici & Karato 2003; Regenauer-Lieb &
Yuen 2003). The efficiency of this feedback mechanism, and hence
the intensity and longevity of the low-viscosity bands, requires that
creation of damage by deformational work, and the loss of damage
zones by self-healing, must be much more significant than advective
loss of damage. If advection is dominant in the damage-evolution
equation, it will sweep away damage zones before they have a chance
to be sufficiently focused and thus lessen the effectiveness of the in-
trinsic feedback mechanism.

From those results and results from Bercovici (1996, 1998), who
successfully used similar rheology to produce transform faults in
a 2-D horizontal layer, we expect that this kind of self-lubrication
damage rheologies will produce acceptable plate-like behaviour in
3-D calculations, if sufficiently high values of a and b are used.
This expectation stands a little in contrast to work recently done by
Tackley (2000b,c) who includes a similar type of rheology in 3-D
internally heated calculations. His damage parameter equation is the
same as ours, but he adopted a linear viscosity law ηeff,dam = (1 − d)
ηeff, where ηeff is a yield stress viscosity. Keeping a fixed, Tackley
presents three calculations with different b and concludes that this

kind of rheology: (1) improves localization at spreading centres,
but tends to fragment plates and (2) weakens convergent zones and
makes downwellings episodic. Both the weakening of convergent
zones and the fragmentation of plates could point to too strong
an influence of damage advection, possibly in combination with a
too strong source term a. However, Tackley’s conclusion, that the
localization of spreading centres improves with damage rheology,
is clearly a point in favour of such rheologies. Nevertheless, the
ability of the damage rheology to produce passive spreading in an
internally heated system has yet to be shown.

There still remains the problem of episodic behaviour in calcu-
lations with significant asymmetry of subduction. As a solution to
this problem (see Tackley 2000c; Richards et al. 2001) might be the
introduction of a low-viscosity asthenosphere, which would reduce
the coupling between plates and the mantle, and possibly inhibit
the break off of the slab. A similar effect could be obtained with the
incorporation of phase transitions and/or the modest viscosity jump
at the 660 km discontinuity; either or both of these effects could
also inhibit the detachment and loss of slabs from the upper thermal
boundary layer.
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