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INTRODUCTION

Deformation in the Earth is rarely homogeneous and often occurs in narrow regions of
concentrated strain referred to as zones of shear localization. Mylonites found in the conti-
nental crust are the manifestation of shear localization (White et al. 1980) and, at the largest
scale, shear localization is proposed to be crucial for the generation of tectonic plates from
a convecting mantle (Bercovici 1993, 1995b,a, 1996, 1998; Bercovici et al. 2000; Trompert
and Hansen 1998; Tackley 1998, 2000a,b,c,d). Shear localization is apparent in many field
of physics, including, for example, metallurgy (Lemonds and Needleman 1986), rock me-
chanics (Poirier 1980; Jin et al. 1998), granular dynamics (Scott 1996; Géminard et al.
1999, e.g.) and glaciology (Yuen and Schubert 1979). However, basic solid-state rheolo-
gies, such as elasticity, visco-elasticity, viscous flow and even steady-state non-Newtonian
viscous flow, are insufficient by themselves to generate shear-localization; this is because in
all such rheologies an increase in deformation or rate of deformation results in greater resis-
tance (i.e., stress) instead of self-weakening and loss of strength. Shear-localization tends to
require dynamic feedback mechanisms wherein self-weakening is controlled by a macro-
scopic variable (such as temperature) or microscopic structure (grain size or microcrack
density) whose evolution and concentration are themselves determined by deformation; in
this way deformation can induce weakening, which subsequently causes deformation to
concentrate on the weak zone (being most easily deformed), causing further weakening,
and thus more focusing of deformation, and so on.

One of the most fundamental manifestations of such feedback mechanisms arises from
the coupling of viscous heating and temperature-dependent viscosity wherein the zone of
dissipative heating weakens and thus focuses deformation, leading to further heating and
weakening; this mechanism is thought applicable to problems in metal weakening, glacial
surges, and lithosphere dynamics (Schubert and Turcotte 1972; Yuen and Schubert 1979;
Poirier 1980; Balachandar et al. 1995; Bercovici 1996; Thatcher and England 1998). In
granular media, localization is due to dilation of the medium leading to effectively weaker
rarifed zones that concentrate deformation, which in turn agitates the medium causing
further dilation (Géminard et al. 1999); this phenomenon is of potential importance in
earthquake dynamics (Scott 1996; Marone 1998; Segall and Rice 1995; Sleep 1995, 1997;
Mora and Place 1998). Another shear localization mechanism arises from the reduction
of grain size under stress in solid-state creep mechanisms which have grainsize-dependent
viscosities (i.e., grain reduction leads to zones of weakness which concentrate deforma-
tion, increasing stress and thus further reducing grain size and enhancing weakening); this
mechanism has been proposed to be the cause for mylonitic shear zones and is thought to be
a basic ingredient of crustal and lithospheric deformation (Kameyama et al. 1997; Jin et al.
1998; Braun et al. 1999). Finally, material that undergoes brittle or combined brittle-ductile
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deformation can, with large strain, experience concentration of microcrack and void popu-
lations developing weak bands on which deformation focuses, leading to further cracking,
weakening, and invariably shear localization. This phenomenon occurs in the process of
dilatant plasticity in metals as well as crustal rocks (Lemonds and Needleman 1986; Ashby
and Sammis 1990; Lemaitre 1992; Hansen and Schreyer 1992; Lockner 1995; Mathur et al.
1996; Krajcinovic 1996; Lyakhovsky et al. 1997; Regenauer-Lieb 1999). The inference
that much of the lithosphere undergoes combined brittle-ductile behavior (Kohlstedt et al.
1995; Evans and Kohlstedt 1995), combined with the longevity of plate boundaries (Gurnis
et al. 2000), have motivated some (Bercovici 1998; Tackley 1998; Bercovici et al. 2001a,b;
Bercovici and Ricard 2003; Auth et al. 2002) to consider that the primary weakening mech-
anism that leads to plate boundary formation is due to damage, that is, semi-ductile void
and microcrack formation.

In this paper we examine in some mathematical detail the fundamental physics of shear-
localizing feedback mechanisms by using the basic model of a simple-shear layer. Such
a layer could represent anything from a strike-slip shear zone to a subducting slab to a
glacial gravity flow, etc. Simple one-dimensional shear-flows have been considered many
times before, primarily for viscous-heating and thermal-runaway effects (e.g., Yuen and
Schubert 1977; Schubert and Yuen 1978; Fleitout and Froidevaux 1980). Here, we will
use this model to examine three basic feedback mechanisms thought relevant to the man-
tle and lithosphere, i.e., (1) viscous heating with temperature-dependent viscosity; (2) a
simple damage formulation to model semiductile-semibrittle behavior; and (3) grainsize-
dependent rheology and recrystallization. (While we focus on only three basic mechanisms,
a more complete survey of many shear-localizing mechanisms, but with less mathematical
detail, is provided by Regenauer-Lieb and Yuen (2002).) An important aspect of any feed-
back mechanism is not only how a rheology-controlling macroscopic or microscopic prop-
erty is enhanced by deformation, but also how that property is restored, lost, equilibrated or
“healed”; thus we will also consider some basic healing mechanisms. After our foray into
simply theory, we will discuss recent progress on some of the more complicated aspects of
these feedback mechanisms, and will close with a brief summary.

THEORETICAL PRELIMINARIES

To illustrate the essential physics of shear localization with various rheological mecha-
nisms, we consider a model of unidirectional simple-shear flow in an infinitely long chan-
nel. The channel is infinite in the � and � directions and is ��� wide, with boundaries
at � �"!#� that move in opposite directions along the � direction. Since the channel is
uniform and infinite in � and � , none of the properties of the medium (stress, velocity, tem-
perature, etc.) are functions of � and � , but only of � and time $ . In this case, the general
force balance equation (i.e., assuming slow creeping flow and thus negligible acceleration
terms) is

% �'&)(+*-,.(�/10 , 2�3 (1)

where * is pressure or isotropic stress, 0 the deviatoric stress tensor, 2 the density and 3
the gravitational acceleration vector. The component of this equation in the � direction,
given that there is no dependence on � and � (assuming that 3 is only in the � direction)
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becomes

% �
�������
� � (2)

where
�����

is the shear stress that is acting on surfaces facing in the � direction but pulling
on them in the � direction. The above equation implies that

�	��� � � which is a constant in
� .

For viscous flows, shear localization is measured in terms of strain-rate,

� ����� (�� ,�� (�������� (3)

where

� is the strain-rate tensor and � the velocity vector. In our example � ��� � ����� 

where � is the velocity in the � direction and � the unit vector in the � direction; thus the
strain-rate tensor has only one unique component !" ��� � ���#%$#

� .

We make the simplifying assumption that stress is related to strain-rate plus only one
other variable which we’ll denote for now by & which is either temperature, void fraction
or grainsize. The constitutive relation between stress and strain rate is thus

0 � �(' � &*)+!" � 
� ,-, ( /.�+/ (4)

where ' is viscosity, !" � ���� 
� 0 
� (which is related to the 2nd strain-rate invariant), and ,
is a material property which includes the bulk viscosity. In our example, since � �1� � ��� � 
there is ony one stress and one strain-rate and our constitutive law becomes

� � �(' � &2)+!" �3!" (5)

where !" �4�� #%$#
� .

If the relation between stress and strain-rate is monotonic (i.e., an increase in one always
causes an increase in the other), and there is no feedback between strain-rate and the state
variable & , then there can be no localization in our example. In particular, say we employ a
power-law rheology, then ' � ��65 !"+798;:: where 5 is a constant and < is the power-law index.
For pseudo-plastics (like many food products such as mustard and ketchup, and silicates in
the dislocation-creep regime) <>=1? so that viscosity decreases with increasing strain-rate.
However, stress and thus resistance to motion, or strength,

� � 5 !" �A@CB always increases
with strain-rate, even if the viscosity decreases. Moreover, in our example, !" � � �+D 5 � B is a
constant across the layer because

�
and 5 are constants, and thus without any heterogeneity

in strain-rate, there is no shear-localization anywhere in the layer.

For the model system to develop shear-localization, it must allow non-constant strain-
rate across the layer (the localization is a region of high strain-rate surrounded by low-strain
rate). This can be accomplished in our model if the effective stress–strain-rate relation is
non-monotonic (i.e., there is a maximum or minimum stress), such that one stress can yield
at least two-possible strain-rates. As we show below, such an effective rheology generally
arises from a feedback between the state variable & and the stress or strain-rate.

SHEAR LOCALIZING FEEDBACK MECHANISMS

One requirement of a feedback mechanism that permits shear-localization is that the
evolution of & must depend on the deformation, i.e., strain or strain-rate of the system; in
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our examples we will focus on completely irrecoverable deformation and thus work with
strain-rate (i.e., we will take a viscous-flow approach). Thus, for a feedback mechanism
to exist, an increase in strain-rate must lead to a change in & that subsequently reduces
the viscosity, causing (through Eqn. 5) yet larger strain-rate, and so on. We will examine
our three basic feedback mechanisms (thermal, simple-damage and grainsize controlled)
for simple decay-type loss mechanisms that facilitate the analysis. The decay-loss mecha-
nism, however, is not always realistic in the case of thermally-controlled, and possibly even
damage-controlled feedback mechanisms, wherein diffusive loss is as important; therefore,
we will analyze these feedbacks for diffusive loss as well, which leads to different mathe-
matical solutions but the interpretation is related to the simpler decay-loss cases.

Thermal feedback with decay-loss healing

In considering the feedback between viscous heating and temperature-dependent vis-
cosity, we define & to be temperature � . The evolution equation for � involving temporal
change, advective transport, decay loss and a deformation-related source term is

2���� � � �� $ ,-� /�(��
	 �'&
� � � &��� � , �(' � � ) !" � !" � (6)

where 2 is density, ��� is heat capacity, � is a heat-transfer coefficient, and �� is the value
of � to which the unforced system equilibrates (e.g., it could be the temperature of heat
reservoirs in contact with the boundaries of the channel). A heat-transfer coefficient can be
used instead of diffusive loss if the layer thickness � is very small (in which case ����� D � �
where � is thermal conductivity). The last term on the right represents the deformational
work, which for simple single-phase systems goes into dissipative heating and thus an
increase in internal/thermal energy (i.e., via an increase in entropy). As discussed in the
next subsection, in multi-phase systems, part of this work can also go into creation of
surface energy by, say, creating new microcracks, voids and/or defects.

Given the nature of our simple one-dimensional system, Equation (6) becomes

2���� � �� $ � &�� � �.&��� � , �(' � � )�!" �3!" � (7)

Let us first consider steady-state solutions such that Equation (7) becomes

� � � &��� ��� �(' � � )+!" ��!" � (8)

To solve this system we must specify the viscosity law for ' � � )+!" � . Materials that undergo
solid-state creep (diffusion or dislocation creep) have a temperature-dependence of viscos-
ity given by an Arrhenius factor; for our 1-D system the viscosity law can be written in
as

' ��� 5����:���� !" 798;:: (9)

where 5 is constant, � is the activation enthalpy,  the gas constant and < the power-
law index; for Newtonian diffusion creep < �4? , while typical values for non-Newtonian
dislocation creep in rocks is < �"! to # . We can reduce the number of free parameters by
defining variables in terms of the natural scales of the system. We define � �$�% ,&�
')(
and !" � !" ' !"�* where � ' and !" ' are as-yet-unknown scales, and ( and !"+* are dimensionless
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temperature and strain-rate, respectively. Substituting these expressions into Equation (8)
while using Equation (9) leads to (dropping primes for simplicity)� � �
'

5 � !" ' � 7��6::�� ( � � � �� ��� � 7:
	��������� !" 7�� :: (10)

where (  � �� D �
' . Likewise, the constitutive law Equation (5)–along with Equation (9)–
becomes� �

5 � !" ' � �A@CB�� � � � �� � � � 7:�	 �������� !" 7: (11)

The expressions in square brackets are dimensionless groups, and we can choose � ' and !" '
to make two of these go to unity. In particular, we define

� ' � �  ����� !" ' � � � � 5 	
::�� 7

(12)

such that Equation (10) and Equation (11) become our steady-state governing equations:

(#��� � 7������ !" B�� �! 7: (13)

and "
� � � 7������ !"  7: (14)

respectively, where"
� �

�  
5 B � � 	

7:#� 7
(15)

Although we have reduced the number of free parameters, our system still depends on the
dimensionless boundary or background temperature (  and the power-law index < . Note
that since we have chosen � D  %$%&(' ? %*) K as our temperature scale (i.e., �+$�# %�% kJ/mol
and and  ,$,- J/K/mol), then our typical backround lithospheric nondimensional temper-
ature (  will be of order ? %/. � . We will, however, also examine higher background temper-
atures for the sake of comparison.

Equation (13) and Equation (14) lead to a parametric equation for stress and strain-rate
(i.e.,

"
and !" are functions of each other through the “parameter” ( )"
�0� ( � 7������  7:�� 7 ) !" �0� ( B � . 7������  7:#� 7 (16)

which is thus an effective constitutive law. Curves for the effective constitutive relations
for

"
versus !" for various < and (  are shown in Figure 1. In this case a variety of behavior

is available. For large (� one can obtain a simple power-law like behavior wherein stress
monotonically increases with strain-rate and thus no shear-localization is possible. For
relatively low (  a non-monotonic effective stress–strain-rate constitutive relation occurs
which therefore permits multiple strain-rates across the layer and the possibility of shear
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Figure 1: Effective “stress versus strain-rate” constitutive laws for three different feedback mechanisms with
decay-type loss, as discussed in the text. The top two panels show the thermal feedback, i.e., where the
sheared layer undergoes viscous heating that then influences the viscosity because of its temperature depen-
dence. In these cases viscosity is possibly also a function of strain-rate through a power-law dependence that
is controlled by the power-law index � (i.e., if ����� there is no dependence on strain-rate, and for ���	�
viscosity decreases with increasing strain-rate). The top left panel considers the thermal feedback with the
background or boundary temperature 
�� fixed at the value indicated, and for three different power-law indices
� . The top right panel shows the same feedback for different background temperatures and one power-law
index. For low enough background temperatures there is a region at low strain-rates where stress rapidly
increases and then decreases with increasing strain-rate, which implies a resistance build-up and strength loss
akin to stick-slip behavior. For yet higher strain-rates stress begins to increase again indicating a strength
recovery; however, the rate of recovery with increasing strain-rate is much less for larger power-law indices
� . For high background temperatures, there is no stick-slip-type region. The bottom two panels show feed-
back mechanisms for simple damage (deformation increases void/microcrack density which in turn reduces
viscosity) and grainsize effects (stress reduces grain size which reduces viscosity). The damage mechanism
gives a very simple stick-slip-type behavior with no strength-recovery. The grainsize effect is dependent on
power-law index � , and indices that control the grainsize dependence of viscosity  (if ���� viscosity
is grainsize independent) and the grainsize dependence of grain growth � (if ����� grain-growth is grain-
size independent). Stick-slip behavior in the grainsize feedback mechanism occurs with no finite resistance
build-up; i.e., resistance is effectively infinite when strain-rate is infinitesimally small. For increasing strain-
rate there is strength loss and recovery also. However, the stick-slip type behavior only exists for sufficient
grainsize dependence of viscosity, i.e., ���� .
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localization. Indeed, in these low- (� cases, as many as three possible strain-rates can occur
for a given stress (i.e., the constitutive curves have both a local maximum and a minimum).

The constitutive curves that involve multiple strain-rates for a given stress are also con-
sidered to have a pseudo-stick-slip behavior. In particular, at low strain-rates the material
resistance is large and climbs rapidly with increased deformation-rate, what would be anal-
ogous to “stick” behavior. At a peak stress, however, stress and resistance give way to
the ”slip” behavior and loss of resistance or strength with increased strain-rate (the region
of the constitutive curve with negative slope). In the thermal feedback, stress eventually
begins to climb again at high strain-rates, albeit very gradually, as is characteristic of de-
formation in a hot, low-viscosity medium (which of course, at these high strain-rates and
dissipative heating, it is). Such strength loss and stick-slip behavior is often considered
closely associated with shear-localization.

The multiplicity of states (which then leads to mulitple strain-rates) in this system is
illustrated by considering the possible solutions to temperature ( in the steady-state system;
these are of course the roots to Equation (13) and Equation (14), which can be combined
into one transcendental equation

( � 7������ � "
B � � (17)

These roots as functions of stress

"
are shown in Figure 2. Three roots are possible, and

these represent a cold, highly viscous one (near ( � % ), an intermediate-temperature one
and a hot, low-viscosity one.

There are, however, several constraints on the existence of these three roots. For a
background temperature ( �� ? D�� , the function ( � 7������ has two local extrema (a local
maximum and minimum), and for (��= ? D�� it has no local extrema (only a monotonic
increase with ( ). Thus, for (���? D�� there are three possible solutions to Equation (17),
but for larger (  there is only one solution. Nevertheless, the temperature scale � D  is
so large that essentially all realistic lithospheric temperatures will satisfy the constraint of( �� ? D�� .

There is a further constraint on the possibility of shear localization in that the three
possible roots only exist for

"
B�� � beneath a maximum, as shown in Figure 2, which is itself

a function of (  . For plausible lithospheric values of (� ��� � ? % . � � , the maximum stress
is given by

"
B�� � $ ? %
	�� (see Fig. 2). The scale factor by which we redimensionalize

"
is given by Equation (15); we can estimate this factor using typical silicate values for the
given constants, namely < � ! , 5 B � �� # ' ? % .������ � 	�� , (e.g., see Turcotte and Schubert
1982), � D  %$%& ' ? % ) K (see above), and � � � D � � $ � ' ? %/. � ) ��� � � . � � . � assuming
���1? % km. With the resulting scale factor, which is of the order ? %�. ) MPa, and the critical
value of

" $ ! ' ? %
� (having used < � ! ) we find the maximum
�

is of the order of
? % � MPa. Thus essentially all tectonic stresses will fall below this maximum stress and
thus permit multiple solutions and thus shear localization.

However, because steady-state solutions to these equations exist does not mean they are
stable against perturbations. Although we could perform a linear stability analysis of these
solutions, or even calculate a full nonlinear time-dependent solution, it is instructive to
inspect the evolution equation. In particular, if we nondimensionalize time by 2�� � D � , then
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Figure 2: Solutions of the state variables (temperature � , void density � and grainsize � ) as functions
of stress � for the same three feedback mechanisms of Figure 1. For each mechanism at least two
possible solutions exist for a single stress � . Since multiple possible states exist for one stress
across the sheared layer, then mulitple viscosities and strain-rates can exist within the layer also,
which is a condition for shear-localization (since it implies nonhomogenous shear). For the thermal
feedback mechanism, three possible solutions exist for stresses beneath a maximum � which is
itself a function of background temperature �  and power-law index � (note � is absorbed into
the abscissa of the plot). The damage mechanism allows two possible solutions for a given stress
beneath a maximum stress ���
	��� . For the grainsize mechanism, however, two possible solutions
exist if the grainsize dependent of viscosity is sufficient (i.e., ����	 ) and such multiple solutions
exist only for a stress above a minimum value, instead of beneath a maximum as with the other two
feedback mechanisms.

along with the other nondimensionalization steps discussed above, Equation (7) becomes� (� $ � &�( ,
"
B�� � � . 7������ (18)

If we plot #��# � versus ( (Fig. 3) – a plot often referred to in dynamical systems as a phase
diagram– we can see that the steady solutions occur where the curves intersect the #��# � �

%
line. The stability of either steady solution is given by the the slope of the curve at the
relevant interesection. If the slope is negative at the steady solution then it is stable; i.e.,
solutions on the curve to either side of the steady one will evolve to the steady solution (in
particular, if the solution is to the left of the steady case with a smaller ( then its growth
rate is positive and it will grow toward the steady value; if it is to the right with a larger ( ,
the growth rate is negative and the solution will decay to the steady value). In contrast if
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Figure 3: Phase diagrams for the same three feedback mechanisms of Figures 1 and 2, which show time-rate
of change of the state variables versus the state variables themselves (i.e., temperature 
 , void density � and
grainsize � ). All panels show phase trajectories for different values of stress � as indicated; the top two panels
show the thermal feedback with two different background temperatures 
 � . These phase diagrams illustrate
the temporal behavior of the feedback mechanisms and the stability of the steady solutions illustrated in
Figure 2. Steady solutions occur where the phase trajectory crosses the line where the time-rate of change is
zero. The trajectory slope at these intersections indicates the stability of the steady solution; i.e., the solution
is unstable if the slope is positive, and stable if negative (see text for further discussion). Trajectories that do
not cross the zero-rate line have no steady solution. See text for further discussion.

the slope is positive at the steady solution then that solution is unstable (solutions to either
side of the steady one will diverge from it). In the case of Equation (18) (Fig. 3) we see
that if the background temperature (� is sufficiently small (such that there are three possi-
ble steady solutions) then both the cold/viscous and the hot/low-viscosity cases are stable
( ��( D � $ vs. ( has a negative slope at that root), while the intermediate-temperature case is
unstable. Therefore unsteady solutions in the vicinity of the intermediate-temperature root
will evolve toward one or the other stable root; temperatures hotter than the intermediate
case will grow to the hot steady state, and colder temperatures will go to the cold case.
Therefore, since the layer will in the end have two different temperatures and two strain-
rates, then weak zones and localization can be expected to occur (as long as the initial
temperature is in the vicinity of the intermediate root). However, when a localized weak
zone develops, it cannot weaken and localize without bound but must stop at the hot/low-
viscosity solution. Thus a fault-like shear localization is impossible for this mechanism.
However, it should be noted that given the temperature scale � D  $ & ' ? % ) K both the
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intermediate and hot/low-viscosity roots are at temperatures near or well in excess of the
melting temperature. Therefore, this mechanism would in fact give way to a melting in-
stability well before these roots were reached. With such melting and extreme viscosity
and strength drop, an extremely sharp localization is possible, although that is beyond the
simple physics we are exploring in this model.

Simple-damage feedback with decay-loss healing

The large region of the lithosphere that is thought to undergo combined brittle-ductile
behavior (Kohlstedt et al. 1995) is suggestive of a damage-induced shear localization whereby
microcracks forming in zones of ductile deformation focus into weak zones that thereby
concentrate deformation and accelerate their own nucleation and growth, in the end creat-
ing distinct shear bands that appear like faults. Damage-induced shear localization is also
appealing given the various roles it offers for water, which is thought to be a facilitator
of plate tectonics, and the cause for plate tectonics on Earth but not the other terrestrial
planets (Tozer 1985). For example, volatiles such as water can either facilitate damage
through hydro-fracturing, pore-pressure-reduction of friction and simple lubrication of slip
zones; and/or the damaged material (with finite pore space and open grain boundaries) can
facilitate hydrolytic weakening of minerals and/or pressure-solution creep (Guéguen and
Palciauskas 1994; Ranalli 1995). Although the role of water has generally been thought to
be confined to only the upper few tens of kilometers of the lithosphere, there is growing
evidence that it is present and influencing Earth’s rheology and evolution at hundreds of
kilometers depth (Hirth and Kohlstedt 1996; Karato 2002).

A simplified viscous damage theory termed the “void-volatile” mechanism (Bercovici,
1998; see also Regenauer-Lieb, 1999) involves modelling the evolution of microcrack or
void density with a scalar transport law in which deformational work provides the source
for void creation (similar to the heat-transport equation with frictional heating included). In
this case, the weakening variable & is set equivalent to void volume fraction (i.e., porosity)�

, and we write a simple transport law which in our 1-D example is

2�� � �� $ � &�� � � & �  � , ��� ' � � )�!" �3!" � (19)

where � is the proportionality factor between
�

and energy per unit mass, � is analogous
to � , and

�  is the background value of
�

to which the unforced system equilibrates. In
this equation we have assumed that some fraction � of the deformational work goes into
creation of surface energy by creating new microcracks, voids and/or defects; this is often
referred to as stored-work, or, as discussed in the 1920s by G.I. Taylor, through his exper-
iments on torsional deformation of metals, as latent-heat of cold work (Farren and Taylor
1925; Taylor and Quinney 1934). Finally, we assume a linear dependence of viscosity on�

, which is relevant for the sort of two-phase mixtures assumed here (Bercovici 1998; Ri-
card et al. 2001). In particular, if the mixture is of a solid matrix with viscosity '�� and
a void-filling fluid with viscosity '
	 , then simple mixture theory will yield an effective
viscosity of '�	 � , '�� � ? & � � , which can be recast as

' � '� � ? &�� � � (20)

where '� � '�� is the reference viscosity and � � � '�� &1'�	6� D '�� controls viscosity
variability.
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Again we first consider steady solutions to Equation (19), i.e., solutions of

� � � & �  ��� ���	'� � ? &�� � � !" � (21)

To reduce the number of free parameters in the system, we again use the natural scales of
the system by first defining

� � �  , � '�� (22)

where
� ' is an as yet unknown porosity scale and � is a rescaled porosity perturbation. In

this case we rewrite viscosity as

' � '  � ? & � � '
? &�� �  � 	 (23)

where '� � '� � ? &�� �  � . At this point we can define the porosity scale as
� ' � � ? &�� � %� D � (24)

such that our viscosity law becomes

' � '  � ? & � � (25)

We define strain-rate also in terms of a dimensionless quantity, namely !" � !" '�!" * where !" '
is a dimensional scale and !" * is a dimensionless variable. In this case, the constitutive law
(Eqn. 5 using & � �

) leads to� �
�('� !" ' � � � ? & � �3!" * (26)

and Equation (21) becomes�
� � ? & � �  �
������'  � !" ' � � � � � � ? & � �3!" * � (27)

where the terms in square brackets are dimensionless groups. We choose our strain-rate
scale to set one of these groups to unity:

!" ' � � � ? &�� �  �
������'  � �

������'� (28)

Thus, our two governing equations, Equation (26) and Equation (27) become, after drop-
ping the primes,"

� � ? & � �3!" (29)

and

� � � ? & � � !" � (30)

where "
� � ���

�('� � � ? &�� �  � (31)
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represents a dimensionless imposed stress. With these equations we can eliminate � to
arrive at an effective constitutive law"

� !"
? , !" � (32)

which is shown in Figure 1. As noted in the previous section, because stress increases
sharply below a certain strain-rate (in this case at !" ��? ) and then decreases for higher
strain-rates, this effective constitutive law has been referred to explicitly as a stick-slip
rheology (Whitehead and Gans 1974; Bercovici 1993). However, in contrast to the thermal
feedback mechanism, the material continues to lose strength (stress decreases) as strain-
rate goes to infinity; this implies that effectively infinite strain rates can be achieved, and
the ongoing strength loss is indicative of a runaway effect, which will become more evident
momentarily.

Apart from the effective constitutive law, the actual solutions for � and !" in terms of
"

are instructive for inferring shear-localization in the layer. The steady-state solutions
require

� ��� � ? !�� ? & �
"
� � ����� !" � ?

�

"
� ? !�� ? & �

"
� � (33)

and thus for a given

"
there are two possible porosities and strain-rates, a high-porosity/fast

(i.e., rapidly deforming) one associated with the , root, and a low-porosity/slow case as-
sociated with the & root (Fig. 2). Shear localization requires inhomogeneous strain-rate,
i.e., for a given stress across the layer localization requires at least two possible strain-rates
to co-exist, which this feedback mechanism also provides. Again, shear localization would
be manifest if the layer contained some regions with the slow solution and some with the
fast solution (the localizations would then be the fast zones).

Equation (33) shows that there are no steady-state solutions if

"
= �� , in which case

there are only time-dependent solutions. We can infer both the nature of time-dependent
solutions and the stability of steady-state solutions by inspecting the evolution equation
Equation (19). In particular, if we nondimensionalize time by 2�� D � , then along with the
other nondimensionalization steps discussed above, Equation (19) becomes

� �� $ � & � ,

"
�

? & � (34)

If we plot #��# � versus � (Fig. 3) we again see that the steady solutions occur where the curves
intersect the #��# � �

%
line and the stability of steady solutions is given by the the slope of the

curve at the relevant interesection. In this case, the low-porosity/slow steady solution is sta-
ble and the high-porosity/fast one is unstable. However, this does not mean that the system
will everywhere evolve to the slow solution; indeed, values of � even slightly greater than
that for the fast solution will grow toward even larger porosities. Although the maximum
� is 1 (lest we have a negative viscosity), solutions with porosities larger than that for the
high-porosity/fast solution will undergo a run-away to � � ? and hence zero viscosity. In-
deed, by inspection of Equation (34), an urealistic solution of � infinitesimally larger than
1 leads to an infinitely large negative growth rate which forces such unrealisic solutions to
decay back to � � ? . In essence, � � ? is a stable singularity. In those regions with � � ?
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the strain-rate (which goes as

"
D � ? & � � ) will be infinite. However, the size of any zero-

viscosity zone is of finite width since it is entirely dependent on the initial porosity field; it
will be as large as any region whose initial porosity exceeded that for the high-porosity/fast
steady solution and thus grew to � � ? . Thus although the strain-rate might be heteroge-
neous, the shear zone does not necessarily self-localize, although the infinite strain-rates
require the velocity drop across a zero-viscosity zone to be infinite. Finally, if

"
= ? D � ,

there are no possible steady solutions (see Eqn. 33 and Fig. 1) and the entire system goes
to � � ? , i.e., the entire layer undergoes a runaway and has an infinite velocity drop across
it.

To put some of these dimensionless results in a physical perspective, we can try to
redimensionalize the critical stress

"
� �� (below which there is shear-localization since two

strain-rate solutions are permitted). The simple damage theory is idealized but we can relate
some of the constants in the scaling equation Equation (31) to physical parameters. First,
the partitioning fraction � is likely to be of order 0.1 (Ricard and Bercovici 2002), and � is
likely to be near unity. We can assume a very high lithospheric viscosity of '  $ ? % ��� Pa s
(Beaumont 1976; Watts et al. 1982), and that background porosity

�  � ? . The quantitiy �
is more difficult to quantify; it has units that represent the loss of energy density ( � D�� 	 ) per
second. The energy density is likely given by surface energy on cracks, which in terms of
volumetric energy density will be surface energy � –typically of order 1-100 � D�� � for crack
surfaces (Jaeger and Cook 1979; Cooper and Kohlstedt 1982; Atkinson 1987; Atkinson and
Meredith 1987)– times void or crack curvature � (the inverse of void or crack size which
is typically 100-1000

� . � ). The loss rate of this energy is unclear but we will assume that
is controlled by loss of void-filling material, namely water, through Darcy-type flow; in
this case the flux rate (Darcy velocity) of fluid is of the order � � � � 2
	�� D '�	 , where � �
is permeability (of order ? % . � ) � � for porous rocks), 2	 is water density ( ? %%�%���� D�� 	

),
� is gravity, and '�	 is water viscosity ( ? % . 	 Pa s). The time-scale for energy loss will be
typically � D � where � is the length-scale of the shear-zone (1-10 km), and thus � will
scale as �%��� D � . Given these values, the critical dimensional stress

�
from Equation (31)

is of the order several 100 to 1000 MPa, which is indeed typical of or larger than tectonic
stresses. Thus we can speculate that tectonic stresses are sufficient to induce localization
with this damage mechanism.

Grainsize feedback

Grainsize reduction is an important cause for shear localization. The association of
shear localization and grainsize reduction is evident in mylonite shear zones (White et al.
1980; Jin et al. 1998). However, the link between grainsize reduction and shear localization
is not clearly understood. The way in which grainsize is controlled during deformation is
more complicated than other variables such as temperature. In fact, some recent analy-
ses underscored the difficulties in explaining shear localization through grainsize reduction
(Bresser et al. 2001; Montési and Zuber 2002), suggesting a need for more complete anal-
ysis of this problem. This section reviews some key concepts in grainsize sensitivity of
deformation with the emphasis on the processes of dynamic recrystallization.

Grainsize controls the rheology through two contrasting ways. Under low temperature
conditions where dislocation recovery and diffusion do not occur, grainboundaries act as a
barrier for dislocation motion and the presence of many grainboundaries causes hardening
(the Hall-Petch effect; see Cottrell 1953). In contrast, when diffusion and resultant dislo-
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cation recovery become effective (at high temperature � , i.e., exceeding roughly 50% of
the melting temperature), then a smaller grainsize leads to weakening because deformation
by diffusive mass transport occurs more efficiently for smaller grain sizes. Under most
tectonic conditions except the shallow lithosphere, diffusive mass transfer is likely to be
important, and we consider the effects of diffusion creep here. For simplicity, we assume
(as in the previous sections) that viscosity depends only on grainsize � and strain-rate, i.e.,

' � ' � ��)+!" ��� '�
�
�

�  	
� � !"

!"  	
798;::

(35)

where � � � & ! and < � ? for diffusion creep, and � $ % and < � ! & # for dislo-
cation creep; �� is a reference grainsize and !"  is the reference strain-rate, both of which
are defined below. The rheological law Equation (35) prescribes dependence of viscosity
on grainsize and strain-rate, although strictly speaking these effects do not occur simulta-
neously since grainsize dependence occurs in diffusion creep, and strain-rate dependence
occurs in dislocation creep. Moreover, one of the dominant processes leading to grainsize
reduction, namely dynamic recrystallization, occurs only in the dislocation-creep regime,
and thus the feedback between grainsize reduction (while in the dislocation-creep regime)
and grainsize-weakening (while in the diffusion-creep regime) only occurs if the material
essentially experiences both creep regimes. This would seem to constrain the feedback
mechanism to only be effective near the transition between creep regimes. However, the
actual rheology of the material is complicated because it is essentially composed of two
phases, i.e., coarse-grained strong matrix (which deforms by dislocation creep) and fine-
grained weak regions (deforming by diffusion creep). The flow law parameters such as <
and � in such a two-phase material are not well known but are likely to be between those
for dislocation and diffusion creep. Therefore when deformation reduces the grainsize,
there is a feedback mechanism that could causes self-weakening and shear localization.

There are several processes by which grainsize evolves. The first is dynamic recrystal-
lization wherein gradients in dislocation density drive formation of new grainboundaries
and/or mobilization of existing boundaries leading to the modification of grainsize. Evi-
dence of dynamic recrystallization is ubiquitous in naturally deformed rocks (Urai et al.
1986). The second process involves chemical reactions, including phase transformations
(Furusho and Kanagawa 1999; Karato et al. 2001; Rubie 1983, 1984; Stünitz and Tullis
2001). In both cases, the kinetics of nucleation and growth controls the grainsize during
deformation or chemical reactions, whereas after the completion of these processes, grain
growth, through the reduction of grain-boundary surface energy, plays an important role
when the grainsize is small enough. Whether grainsize modification causes shear localiza-
tion depends on the competition between the weakening effect due to grainsize reduction
and the hardening effect due to graingrowth, the details of which are specific to the particu-
lar processes involved. Here we consider the effects of grainsize evolution during dynamic
recrystallization. In this case, and in the context of our simple-shear flow model, grainsize
evolution may be described by

�
�� $ � &

!""  � � &��� � , �
� � � . � (36)

(Karato 1996; Kameyama et al. 1997) where the first term represents the effect of dynamic
recrystallization on grainsize and the second term the effect of graingrowth; "  $ ? is
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the strain needed to complete dynamic recrystallization (Karato et al. 1980); K is a rate
constant for graingrowth; � ��� & ! such that grain growth is fastest for smaller grains
when grain-boundary surface energy is large and diminishes as grains increase in size; and
�  is the equilibrium value of � if there were no grain-growth and is in effect the grainsize
at which dynamic recrystallization is completed. This grainsize �  may be determined
by the nucleation-growth and impingement of growing subgrains on one another (Derby
and Ashby 1987), or by subgrain rotation and dislodgement under deformation (Shimizu
1998). The implicit assumptions behind Equation (36) are, first, that grainsize reduction
and graingrowth occurs simultaneously, and, second, that the time scale to obtain a short-
term equilibrium grainsize �  is significantly smaller than the time scale for graingrowth
(therefore �� is assumed to be a constant).

As in previous sections, we nondimensionalize Equation (36) by defining �-� �  � ,
$�� ����� � $ * , and !" � ����	�����  !" * and thus obtain (dropping the primes for simplicity)

� �� $ � & !" � � & ?6� , � � . � (37)

Similarly, the constitutive law
� � � ' !" becomes, using Equation (35),"

� � � !" �A@CB (38)

where "
�

� � � � 
�('� "  � (39)

In steady state, Equation (37) leads to

!" � � � . �
� & ? (40)

in which case we can re-write Equation (38) as"
�
� � B � � � . �

� & ? 	 �A@CB (41)

We can therefore display an effective constitutive law, as we did previously, by writing

"
as a function of !" parametrically through � , as shown in Figure 1. There is no steadystate
for � �1? where grainsize increases both by dynamic recrystallization and by graingrowth
(assuming that both the imposed

"
and the resulting !" are = % ). We will thus consider only

the case � = ? , that is when an initially large grainsize is reduced by deformation.

For sufficiently large � (i.e., sufficient grainsize dependence), the effective constitu-
tive law is similar to that for the thermal-feedback case in which there is a region at low
strain-rates whereby stress decreases with strain-rate (the “slip” regions), and a region at
higher-strain rates whereby stress increases gradually. The stress-loss region is, as dis-
cussed before, an apparent feature of shear-localizing mechanisms. In contrast to the other
feedback mechanisms, however, there is no finite region at low-strain-rates where stress in-
creases sharply with strain-rate. Instead the peak strength occurs at zero strain-rate, which
is similar to true stick-slip behavior whereby the “stick” response involves no motion until
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a peak or yield stress is achieved, after which there is progressive loss of strength (i.e.,
failure ensues).

The stick-slip region only exists when there is a minimum stress in the effective consti-
tutive curve (see Fig. 1) which means that somewere on the curve

�

"
� !" �

� �

� !"
�

"
� � �

?
<
� � B � � � . �

� & ? 	 798;:: � B � ? & � < � & � � � � & ?6�? , � � � & ?6� � % (42)

For � � % (i.e., no grainsize dependence) there can be no stress minimum and the constitu-
tive curve has the appearance of a simple power-law relationship. For � = % , the minimum
occurs at � � ? , �B � . � . Since we require � = ? then < ��= � ; therefore if, for example,
< � ! and � �$! then even linear grainsize dependence � �4? is not sufficient to give a
stick-slip effect and the constitutive curve again looks like the case for � � % (see Fig. 1).
For parameter combinations in which < � = � , stick-slip behavior can occur.

One should note, however, that in cases where stick-slip behavior occurs the stress
spuriously goes to infinity as strain-rate goes to zero (see Fig. 1). This is an artifact of
the model in that as grainsize � goes to infinity (associated with !"�� % ; see Eqn. 40) the
grain-size dependence of stress is assumed to persist (leading to

"
� � ; see Eqn. 41) even

though it should not (i.e., dislocation creep must dominate). Althought beyond the scope
of this paper, a correction to this artifact, such as a grainsize-dependence index � that is
itself grainsize-dependent (i.e., vanishes at some finite grainsize), would likely mitigate this
effect and result in proper stick-slip curves similar to those shown for the other mechanisms
of Figure 1.

The solutions for � in the steady-state system are the roots of Equation (41), which
are shown in Figure 2. There are two solutions if the imposed stress is greater than the
minimum stress"

=
"
��� B �

� � < � & � , ?.� B � . � � �
� < � & � � B � . � 	 �A@CB (43)

The minimum stress

"
��� B is only guaranteed to exist for < � = � . For reasonable values

of < , � and � , this minimum stress is � �

"
��� B � ! which corresponds to 2-300 MPa for

'� � ? % � � Pa s and !"  � ? % . �  & ? % . � � s
. � . One of the solutions is very near � � ?

(the equilibrium grainsize without graingrowth) and the other at large grainsize (Fig. 2).
As stress increases and one moves further away from the minimum stress

"
��� B , the small

grainsize solution decreases whereas the latter increases. For stresses less than

"
��� B , there

are no steady-state solutions.

The existence of at least two steady solutions, which leads to two possible strain-rates
as shown in Figure 1, is a minimum requirement for localization to occur in this, as well as
other previously discussed decay-loss systems. Without two possible solutions, then only
one strain-rate exists and then the entire shear-layer has uniform shear. If two strain-rates
are possible, then the layer can have low-strain-rate regions surrounding high-strain-rate
regions which would represent the zones of shear-localization.

However, an important difference between the grainsize feedback mechanism and the
other two we have discussed (thermal and damage) is that the shear-localization regime
exists for stresses greater than a minimum stress, i.e., it is a high-stress phenomenon; the
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other two mechanisms occur for stresses less than a maximum, i.e., they are low-stress
phenomena.

The stability of these steady solutions is determined by combining Equation (37) and
Equation (38) to obtain

� �� $ �
"
B ? & �

� B � ,
� � . � (44)

whose phase-plot (i.e., � �
D
� $ versus � ) is displayed in Figure 3 for various values of stress

"
. For a stress higher than the

"
��� B (such that two steady solutions are realized), the steady

solution for the small grainsize is stable (the slope of the phase-plot curve is negative at the
steady solution, i.e., where it crosses the line � �

D
�$ � % ) whereas the solution for large

grainsize is unstable. For an unstable grainsize, shear localization occurs through bifur-
cation: grains larger than the unstable equilibrium size grow to make materials stronger
(i.e., yield smaller strain-rate) and grains smaller than that size make materials softer hence
yield higher strain-rates. For stresses smaller than

"
��� B there are no steady solutions and

the grainsize everywhere grows indefinitely; in this case, stresses are too small to provide
significant dynamic recrystallization and thus grain growth dominates. Therefore a nec-
essary condition for shear localization, in this grainsize model, is given by Equation (43).
However, certain values of < , � and � (in particular that < � = � ) are also necessary to
guarantee the existence of a minimum stress.

The degree to which shear localization develops depends not only on the stress but also
on the viscosity contrast between the two regions which depends, in turn, on the magnitude
of stress as well as temperature. The degree of localization will be higher for higher stresses
and lower temperatures because of the smaller grainsize at higher stress, and because of
the smaller activation energy for diffusion creep than that for dislocation creep in many
minerals (Jin et al. 1998).

Note that if the presence of short-term equilibrium is ignored (i.e., �  � % ), then Equa-
tions (37) and (38) are reduced to

� �� $ � & !" � , � � . � (45)

and "
� � :�� � 798 �: (46)

respectively. Equation (46) has only one solution and hence no bifurcation and resultant
shear localization will occur. We conclude therefore that the presence of a short-term,
quasi-equilibrium state is crucial for the development of instability and localization asso-
ciated with grainsize evolution due to dynamic recrystallization. Under these conditions, a
single stress can allow two different grainsizes and thus heterogeneous strain-rate leading
to localization; in essence, the material is composed of two “phases”, one with a small
grainsize (a weak phase) and the other with large grainsize (a strong phase), and there-
fore the presence of twophases is essential for the shear localization. This conclusion is
consistent with the field and laboratory observations where the transient stage of dynamic
recrystallization is characterized by a bimodal distribution of grainsize (Jin et al. 1998; Lee
et al. 2002).
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Various simplifying assumptions have been made that need to be discussed here. First,
we assumed the presence of two time scales to control the grainsize. They correspond to
two physical processes; one is the smallscale balance between growing grainboundaries
and impingement (Derby and Ashby 1987) or local balance caused by subgrainrotation
(Shimizu 1998), and another is the largerscale balance in regions of complete recrystalliza-
tion. When the stress is low and diffusion creep dominates in these regions, then grain-
growth driven by grain-boundary surface energy will occur, which would be balanced with
grainsize reduction by dynamic recrystallization. The latter, longer-scale balance model, is
similar to that by Bresser et al. (1998), but is different from their model. The De Bresser
model assumes that the strain-rates due to diffusion creep and dislocation creep balance.
There is no reason for the strain-rates of these processes to balance because they are in-
dependent processes (Frost and Ashby 1982; Poirier 1985), although grain-growth and
grainsize reduction may balance under some limited conditions. Second, we assumed that
grainsize reduction (by dynamic recrystallization) and graingrowth occur simultaneously.
Strictly speaking, this is not correct because, for a given grainboundary, either dislocation
density contrast or grainboundary curvature imbalance contributes to grainboundary migra-
tion. However, Equation (36) captures some physics to the extent that smaller grains tend
to grow by grainboundary energy driven migration and larger grains tend to reduce their
size through grainboundary migration driven by dislocation density heterogeneity. Third,
the rheology of a material during the transient stage of dynamic recrystallization is likely
to be sensitive to the geometry of a weaker (finegrained) material. When the weaker ma-
terial assumes a connected network, then a significant reduction in strength occurs, which
is likely to lead to unstable localized deformation (Handy 1994). This is analogous to the
brittle fracture where the formation of interconnected cracks through crack-crack interac-
tion is the key to the instability (e.g., Paterson 1978). Such an aspect is not included in
the present analysis, but is starting to be approached by various damage theories, which is
discussed below. Further refinement of the model is needed to treat these details to better
understand the role of dynamic recrystallization in shear localization.

The degree of localization by this mechanism may be limited and dependent on the
temperature. For example, for olivine-rich regions, when the initial grainsize is approx-
imately 3 mm and a stress pulse of approximately 100 MPa is applied at temperatures
around 1100 K, then the viscosity contrast between the coarse and finegrained portions (at
the same stress) is ? % � & ? %�	 but virtually no weakening would occur at � = ?�# %% K.
Therefore shear localization due to this mechanism can occur only in the relatively shallow
portions of the lithosphere. However, even at relatively low temperatures, extreme local-
ization would be difficult with this mechanism alone. A combination of grainsize reduction
with other mechanisms may be needed for extreme localization. Jin et al. (1998) reported
evidence that localization caused by grainsize reduction led to shear melting that resulted
in extreme localization (faulting).

The analyses by Braun et al. (1999) and Frederiksen and Braun (2001) also include the
effects of transient behavior associated with grainsize reduction. In particular, the treatment
by Frederiksen and Braun (2001) is equivalent to a two-phase behavior but the microscopic
basis for the two-phase behavior was not examined in their paper.

Finally, other processes such as phase transformations (or chemical reactions) also lead
to grainsize reduction and resultant rheological weakening and shear localization (Furusho
and Kanagawa 1999; Stünitz and Tullis 2001) (see also Green and Marone, this volume).
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The key concept in such a case is the degree of grainsize reduction associated with a phase
transformation or chemical reaction and the enhancement of transformation by deforma-
tion or vice versa. Although, a quantitative model has been developed for the grainsize
reduction due to a phase transformation (Riedel and Karato 1997), the understanding of
deformation-transformation (or deformation-chemical reaction) interaction remains quali-
tative (Green and Burnley 1989; Kirby 1987).

Thermal and simple-damage feedbacks with diffusive-loss healing

Here we consider the nature of shear-localization when the loss mechanism is diffusive,
i.e., dependent on gradients of gradients (or “curvature”) in the state variable & . This loss
mechanism is only relevant for the thermal feedback mechanism and perhaps the damage
mechanism if the void-filling fluid undergoes chemical diffusion or hydrological conduc-
tion (i.e., spreads out to mitigate fluid pressure gradients). The mechanism is not relevant
for the grainsize feedback mechanism. In this case, the governing evolution equations for
temperature and porosity are similar enough that we can write them with one equation:

2�� � &� $ � �
� � &� � � , ���	' � &*)�!" �3!"

�
(47)

where & is either temperature or porosity, � is a conductivity (thermal, chemical or hydro-
logical), and � � ? for the thermal mechanism, or

% � � � ? for the damage mechanism.

We can solve for the steady-state structure of & (in the 0-D examples, this structure was
determined by the initial conditions) and thus the velocity field � � ��� as well. As with the
previous examples using our simple-shear-layer thought-experiment, while shear stress is a
constant

�
across the layer, & is not necessarily so, and thus strain-rate is possibly variable.

In terms of the shear-rate
� � D � � , the constitutive law leads to� �� � �

�
' � &2) � � D(� ��� (48)

We consider only the steady limit of Equation (47) which is

% � � � � &� � � , �� �	' � &*) � � D � ���
� � �� � 	

�
(49)

In addition to assuming that the channel’s top and bottom boundaries (at � � !#� ) have
equal and opposite motion, we also prescribe them to be held at a constant temperature or
porosity &  . Given the symmetry of the problem we assume that at � � % the velocity
� is zero, and & is at its maximum (i.e.,

� & D(� � � % at � � % ). Given these boundary
conditions, we can solve Equation (48) and Equation (49) to infer the structure of shear
localization across the channel.

We again consider two different viscosity laws, i.e., Arrhenius for the thermal feedback,
and linear for the damage feedback, each of which requires a slightly different scaling
analysis, and significantly different analytic solutions.

Thermal feedback. Here we examine our basic feedback mechanism using the ther-
mally activated Arrhenius power-law viscosity. Given the constant stress

�
across the layer,

the stress-strain-rate relation leads to (using Eqn. 9 and Eqn. 48)� �� � � � � �5  B � . �� � (50)
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and a steady heat equation (again using Eqn. 9 and Eqn. 49)

% � � � � &� � � , 5
�
��
� �� � 	

:#� 7: � �:�� � (51)

where we assume that all deformational work goes into viscous heating and thus �.� ? .
Again using the nondimensionalizing scheme described previously, where now the tem-
perature and velocity scales are & ' � � D  and

� '�� ������������
	����� ::#� 7 , Equation (50) and
Equation (51) become

� �� � �
"
B � . 7������ (52)

% �
� � (� � � , ��

"
B�� � � . 7������ (53)

where now"
� �

� ��� �  
5 B � � 	

7:#� 7
(54)

and (  �" &� D � is the dimensionless boundary temperature. Again,

"
is the dimension-

less stress, and as with the 0-D decay-loss cases, both < and (  appear in the dimensionless
equations. (Although (� could be absorbed into the differential equation readily by defining
a variable � � (  , ( , it would simply reappear in the boundary conditions.)

Multiplying both sides of Equation (53) by � � ( D � � and integrating we arrive at
� (� � � !

"
:#� 7	�� � � &�� � (  , ( � (55)

where

� ��� � ��� � . �A@�� � � � � � . �A@�� &���� � ? ) ? D � � (56)

in which � is a dummy variable and

��� � � ) � � � �"!
�
$ . � � . � � �$ (57)

is the error integral. We can find solutions to (55) that are parametric in the peak “temper-
ature” ( � � � which occurs at � � % . First, since

� ( D � � � % at � � % (where (#� ( ��� � ) then
we obtain a relation for the integration constant � :� � ��� � (  , ( ��� � � (58)

which can be solved numerically for � given a (  and ( � � � . Next, Equation (55) can be
integrated from � �'& ? to an arbitrary ��� % , and/or from � � ? to any �$# % to obtain

� � ��( *� � � &�� � (  , ( * � �
"
:#� 7	&% ? , �	)('�)+* ��� %

? & �	),'�)
*,-.# %0/ �
"
:#� 7	 � ? &21 �31 � (59)
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Figure 4: Temperature ( 
 ) and velocity ( � ) versus distance across the sheared layer � , for the thermal feed-
back mechanism with diffusive loss and three different maximum temperature anomalies 
������ (indicated)
and a boundary temperature 
 � � �	� � � . Only intermediate temperatures ( 
 �
���� 
 � , the thick solid curve in
each frame) generate localization while cold ( 
 �
���� 
 � , the thin solid curves) and hot ( 
 ������� 
 � , dashed
curves) temperatures generate more distributed and nearly constant shear. Curves are normalized by their
maxima (values indicated).

where we have used the plus sign in Equation (55) for � � % and the minus for � = %
because we assume the temperature increases from the boundary at � �'& ? to its maximum
at �.� % and then decreases again toward the boundary at �-� ? . At � � % equation
Equation (59) yields a relation for

"
as a function of ( � � � :"

:�� 7	 � � � ����� � ( *� � � &�� � (  , ( * � (60)

Lastly, Equation (52) can be integrated to obtain

� � �  ,
"
B � � . 7������ � �

� � �& � � � � ��� " : 8(7	 � � . 7������� � � &�� � (  , ( � ��(
� � � � � ��� � " : 8 7	 � � � & � � (  , ( � (61)

where we have used the fact that � � % at � � % to eliminate �� .
Both temperature and velocity fields for this case are shown in Figure 4 for various

temperature-anomaly maxima ( ��� � . Localization only occurs for relatively cold boundaries
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(in the cases shown, (  � %  % ? ); with much hotter boundaries, there is never any significant
localization since the entire viscosity field is near the minimum value given by the limit
& � � and so thermal perturbations have little effect.

Even with cold boundaries, localization only occurs for a finite range of peak “tem-
perature” ( ��� � . If ( ��� � is too small (in particular

� (  ) then the temperature is nearly
constant across the layer and thus the viscosity field is approximately uniform and very
large; this then leads to effectively Newtonian, constant-viscosity behavior with uniform
shear. If ( ��� � is too large (i.e., � (  ) then most of the viscosity field (instead of just a
narrow portion) approaches the low-viscosity limit at & � � and thus viscosity and shear
are mostly uniform. For ( ��� � � (  , the thermal anomalies are neither insignificant nor so
large as to dominate the entire viscosity field, and thus one can obtain significant viscosity
variations and shear localization across the layer. This result somewhat corresponds to the
curve shown in Figure 1 wherein the “stick-slip” behavior for the Arrhenius mechanism
occurs only over a finite parameter range (in those cases, over a finite range of strain-rates)
outside of which behavior is mostly like that of simple viscous fluids.

Simple-damage feedback. For the simplified damage feedback we again use the sim-
plified linearly temperature-dependent viscosity law ' � '� � ? & � & � , use ��� ? and
rewrite our dependent and independent variables in terms of natural scales, i.e., � � � � * ,
& � &� , & ')( , and � � � ' � * where � * , ( and � * are dimensionless quantities, and & ' and� ' are unknown scales. In this regard, Equation (48) and Equation (49) become

� � *� � �
� � �
'� � ? &�� &� � � ' � � ? & �	& '

? & �	&  ( 	
. �

(62)

% �
� � (� � � , ��

�
'� � ? &��	&� � � � ' � ���& ' � � ? & �	& '

? & �	&� ( 	
. � � � � *� � 	 � (63)

Choosing & ' � � ? &�� &� � D � ,
� ' � � �� 	�� , then Equation (62) and Equation (63) become

(after dropping the primes)
� �� � �

"
? & ( (64)

% �
� � (� � � ,

"
�
�

?
? & ( (65)

where we have used Equation (64) to eliminate
� � D � � from Equation (65), and"

� � � � �
'� � ? & �	&� � � � (66)

is our only free parameter and, again, represents a dimensionless imposed stress. To solve
Equation (65) we multiply both sides by � � ( D � � to arrive at

% �
�
� �

� � (� � 	
�
�

"
� �� ��� � � ? & ( � (67)
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which leads to

� ��(� � � , � � � ? &�( � � !
"
� � & �+ � (68)

where � � and �+ are integration constants; moreover, the plus sign on the right side cor-
responds to � � % , and the minus sign to � = % since we expect ( to increase from 0 at
� �"& ? to a maximum at � � % and and then decrease to 0 again at � � ? . The above
integral can be solved by making the substitution � � � � � , � � � ? & ( � which eventually
leads to the the implicit solution (i.e., � as a function of ( )

� .�� 	�� * � � � � � , � � � ? & ( � � � ! "
� � � �+�& ��� (69)

where
� * � is the imaginary error function

� * � � � � � &�� � * ' � � � � (and by definition
� * ' � � � ��� 	�


�. ! � . �� 	 �� * ). At � � & ? the above equation yields � .�� 	 � * � � � � � �� 	 � �+ ,1?.� and at

� � ,*? it becomes � .�� 	 � * � � � � � �� 	 � ?�& �+ � ; both relations can only be true if �  � % .
This leads to a transcendental equation for �

� * � � � � �
"
� � � � 	 (70)

which generally has two roots, but only for a finite range of

"
; there is no solution for �

for

"
=
"
� where at

"
� the curves (i.e., functions of � ) on each side of Equation (70) just

separate, i.e., intersect at one tangent point; this leads to
� * � � ? D

"
� � � ���� 	 � �A@�� 	� , the solution

for which is

"
� $ ?  % - � . Again, as shown in the earlier section on damage with decay-loss,

this critical stress when redimensionalized will be of the order of 1kbar.

To obtain the velocity field we integrate Equation (64) to obtain

� �
"
� � 	 � � � � � & � � * � . � � � � 	 " � D � � � � � � � � � � � * � . � � � � 	 " � D � � � (71)

where
� * � . � is the inverse of the imaginary error function and we have used the condition

that � � % at � � % to eliminate the integration constant. Evaluating Equation (71) at � �
! ? , and using Equation (70), we find that the velocity at the boundaries is !#� � ; therefore� represents the boundary or maximum velocity (within a factor or 2). By inspection of
the argument to the

� * � . � function in Equation (71), it is clear that the width of the shear
localization zone is

����� � � �
" � .�� 	 � ?� * � � (72)

which is an extremely rapidly decreasing function of � ; thus for large � , �����
will be ex-

tremely small.

That there are two possible values of � for each

"
�

"
� means there are two possible

porosity and velocity fields, ( and � , for each imposed stress

"
. These two solutions have

small and large � which correspond to the low-porosity/slow case (where the viscosity is
large but strain-rate low) and a high-porosity/fast case (low viscosity but high strain-rate).
That there are no steady-state solutions for

"
=
"
� is also evident in Figure 1 by the fact

that effective constitutive law does not exist for stresses above the stress maximum.
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Figure 5: Void fraction or porosity ( � ) and velocity ( � ) fields for the simple damage feedback mechanism
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Figure 5 shows sample solutions for ( and � for various

"
; At

" $ "
� the low-porosity

(slow) and high-porosity (fast) solutions coincide and involve relatively weak shear local-
ization. As

"
� % , the slow solutions approach the constant-viscosity situation in which

there is no shear-localization ( � is small and thus
� ���

is large), and the fast solutions involve
increasingly larger boundary velocities and shear-localization at the midplane � � % that
approaches a nearly fault-like quality ( � is large and thus

�����
is extremely small). It is im-

portant to note again that in this case shear localization is associated with decreasing – not
increasing – stress

"
; i.e., the occurence of shear-localization is associated with a loss of

strength whereby the layer is so weakened that even a very high strain-rate involves a small
stress.

OTHER CONSIDERATIONS

Two-dimensional examples

Some of the feedback mechanisms discussed herein have been examined in various
ways by many authors with regard to lithosphere and mantle dynamics and general rock
mechanics (Schubert and Turcotte 1972; Schubert and Yuen 1978; Yuen and Schubert
1977, 1979; Fleitout and Froidevaux 1980; Poirier 1980; Balachandar et al. 1995; Bercovici
1996, 1998) and incorporated in various ways into mantle-convection calculations (Tack-
ley 2000c,d,a; Auth et al. 2002). These applications have been discussed in other reviews
in some detail (Bercovici et al. 2000; Tackley 2000b; Bercovici 2003). However, with
immediate application to our analysis so far, Bercovici (1998) examined some simple two-
dimensional flow calculations using some of the feedback mechanisms discussed above.
In those calculations, a thin 2-D horizontal fluid layer (representing the lithosphere) is
driven by a source and sink field (representing a mid-ocean ridge and a subduction zone,
respectively). The fluid layer experiences the basic feedback mechanisms with either an
exponential (e.g., ' � � . � �

) or a linear viscosity law ( ' � ? & � & ). The exponential
law represents a temperature-dependent viscosity (in fact, it is a semi-linearization of the
Arrhenius law, i.e., the argument to the exponential is linearized), while the linear one rep-
resents a porosity-dependent law (with a damage feedback in which deformational work
generates voids). The goal of the calculation was to see if the various feedback mecha-
nisms could cause the source-sink driven flow to appear plate-like. A perfectly plate like
flow would involve localized zones of strike-slip shear, or vertical vorticity, connecting the
ends of the sources to the ends of the sinks (Bercovici 1993). In the calculations shown
in Figure 6, the temperature-dependent viscosity law generates very little shear localiza-
tion and flow that is only weakly plate-like (although, as noted previously, this neglects the
likelihood of melting at very high dissipative heating rates), while the linear viscosity law
generates a very narrow and intense localization. These more complicated two-dimensional
results, therefore, are in keeping with the basic physics discussed with our one-dimensional
analysis.

Incorporation of the void-volatile damage theory into two-dimensional convection cal-
culations shows a regime of plate-like behavior involving discrete block-like portions of
the cold upper thermal boundary layer and the development of passive spreading centers
(Ogawa 2002) and dual low-angle fault-like zones above convergent and divergent zones
(Auth et al. 2002). Yet, in fully three-dimensional convection calculations with a visco-
plastic lithosphere both the void-volatile effect and stick-slip self-lubrication approach ap-
pears to lead to too much damage, causing plate-like regions to go unstable and disintegrate
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Figure 6: A simple source-sink flow model illustrating two different shear-localization mechanisms, i.e., (1)
temperature-dependent viscosity and shear heating, and (2) void-volatile weakening (simple damage). The
top frame, labeled S, shows the source-sink field used to drive horizontal flow in a two-dimensional shallow
layer; white represents the source and black the sink. The three underlying columns are horizontal velocity��� (in which gray shading represents velocity magnitude, black being the maximum magnitude); vertical vor-
ticity or rate of strike-slip shear ��� (white is positive vorticity or left-lateral shear, black is negative vorticity
or right-lateral shear), and the scalar field that determines weakening, either temperature

�
or void/volatile

volume fraction � (white is for large values, and black for small values; the values in the gray scales are
multiplied by 1000, as indicated). Without any variable viscosity, the velocity field � � would look more or
less like a dipole field, and there would be no vertical vorticity � � . With variable viscosity, the velocity field
looks more plate-like and there is signficant vorticity, or toroidal motion, generated. The first row of the
6 lower frames corresponds to the case with temperature-dependent viscosity and shear heating. Softening
due to shear heating generates weak zones of strike-slip shear that connect the ends of the source and sink.
Although the velocity superficially appears plate-like, in fact significant deformation of the plate-like region
is occuring, as depicted in the diffuse zones of vorticity. The temperature field

�
also shows only a weak hot

anomaly over the strike-slip zones, and thus a viscosity distribution that is not very plate-like either. With
weakening due to creation of voids by damage (bottom row), the velocity field is more plate-like and the vor-
ticity field is similar to what one expects for discontinuous strike-slip faults, i.e., very narrow, intense zones
of deformation. The void volume fraction � is also very high over the strike slip zones, yielding a contiguous
weak boundary surrounding a uniformly strong plate-like area. Modified after Bercovici (1998).
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into smaller regions (Tackley 2000d); however, the use of both visco-plasticity and dam-
age schemes is likely redundant since each effect separately represents lithospheric failure
mechanisms.

More sophisticated damage theories

The simple void-volatile damage law used by several researchers (Bercovici 1998;
Tackley 2000d; Ogawa 2002; Auth et al. 2002) and discussed in this paper, is idealized and
is rather unspecific about the intrinsic physics controlling damage and shear localization.
In short, while its simplicity is appealing, it is nevertheless ad hoc. A more rigorous dam-
age approach however is difficult to define physically. A signficant body of literature exists
on elasto-dynamics damage with applications from metallurgy to earthquakes (Ashby and
Sammis 1990; Lemaitre 1992; Lyakhovsky et al. 1997; Krajcinovic 1996, 2000). These
models introduce a new thermodynamic field variable (analagous to temperature) called
the damage parameter, and given all the new thermodynamic coefficients thus required the
models tend toward considerable complexity involving multiple free parameters. Viscous
damage theories appropriate to geologic or convective time-scales that are compatible with
convection models are rarer. Recently, a first-principles damage approach has been pro-
posed (Bercovici et al. 2001a; Ricard et al. 2001; Bercovici et al. 2001b; Bercovici and
Ricard 2003) that combines the essence of fracture mechanics with viscous continuum me-
chanics. This model is called a “two-phase damage” theory whereby, rather than invoke a
new thermodynamic “damage” variable as in the elastodynamics theories, it treats damage
through interface and surface thermodynamics. The two-phase damage theory assumes that
the existence of a microcrack in a medium entails at least two phases or constituents, i.e.,
the host phase (the rock) and the void-filling phase (perhaps water). The energy necessary
to create the microcrack is–as proposed in Griffiths crack theory (Griffith 1921)–the surface
energy on the crack surface, or in the two-phase theory the energy on the interface between
phases. Deformational work creates (or is stored as) this interfacial energy by generating
more voids, thus inducing weak zones on which deformation concentrates, leading to more
damage, void creation, localization and so on.

Preliminary simple calculations show that this mechanism can lead to a spectrum of
shear localizing behavior, from more diffuse to very sharp or intense localization (Fig.
7), in addition to broadly distributed damage when the entire system essentially shatters
(Bercovici et al. 2001b; Bercovici and Ricard 2003); the theory has also recently been used
to predict shear-enhanced compaction as well as shear-localization (Ricard and Bercovici
2002). However, as simple as the two-phase theory purports to be, it is still rather compli-
cated (as are all two-phase problems) and is thus a work in progress.

SUMMARY AND CONCLUSIONS

That a large amount of deformation on Earth occurs in narrow bands is evidence of
the importance of shear-localization in the mantle-lithosphere system. In this review we
have discussed some physical and theoretical aspects of various feedback mechanisms that
lead to shear-localization. In particular, we examined in some mathematical detail the
localization that occurs in a simple shear layer with three different rheological feedback
mechanisms. These feedback mechanisms are perhaps the most classical ones considered
in lithospheric deformation and include (1) a thermal feedback wherein viscous heating
causes softening of the material through a temperature-dependent viscosity; (2) a simple
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Figure 7: Simple one-dimensional shear-flow calculation demonstrating the two-phase damage theory. Dam-
age occurs as a result of deformational work creating surface energy on void walls (here treated as the inter-
face between two phases, e.g., rock and water); shear localization occurs because the voids cause weak zones
on which deformation and further damage concentrates, leading to more voids, etc. The result here is for an
infinitely long layer subjected to simple shear by an imposed shear stress (say, by a top boundary at � ���
moving right and the bottom boundary at � ��� � moving left). The left panel shows the distribution of void
volume density or porosity � across the layer (in the � direction) which indicates the location of the generated
weak zone at � � � . The right panel shows the velocity � in the � direction of the matrix (rock) phase; up-
ward motion ( � ��� ) above and downward motion ( ��� � ) below the centerline � � � indicates the matrix
is dilating. The different thickness curves show different times (as indicated) in the calculation. The porosity
� evolves to a sharp cusp-like distribution indicating development of a nearly singular (fault-like) weak zone,
and the cross-layer velocity � becomes nearly discontinuous at � � � indicating fault-like dilation. Modified
after Bercovici and Ricard (2003).

damage feedback wherein deformational work creates voids that in turn weaken the ma-
terial; and (3) a grainsize feedback wherein the material grainsize is reduced by dynamic
recrystallization (related to propagation of dislocations) which then causes the viscosity to
decrease. Each feedback mechanism is associated with a different controlling macroscopic
or microscopic variable, which we refer to in general as the state variable; these are, for
each feedback, temperature, void fraction (or porosity), and grainsize. We also considered
two essential mathematical representations of loss or healing mechanisms, i.e., for each
feedback mechanism, cooling, healing of voids, or grain growth and coalescence, respec-
tively. The mathematical representation of loss accounts for either simple decay-type loss
(i.e., loss depends only on the local value of the state variable) or diffusive loss (which
depends on gradients in the state variable).

In general, the governing equations describe the constitutive relation between stress
and strain rate (their ratio in essence being the viscosity), the dependence of viscosity on
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state variables (as well as strain-rate, in some cases); the force balance for the material
at all points in the shear layer; and the evolution equation for the state variables. These
equations in the end provide solutions for how the along-layer velocity (parallel to the
boundaries of the shear layer) and the state variables are functions of both time $ and the
across-layer dimension � ; e.g., strong variations in � of velocity and strain-rate as well as
strong concentrations of temperature, void-fraction or grainsize, are indications of shear-
localization. For our simple shear-layer, stress is constant in � ; thus shear-localization, i.e.,
heterogeneity in strain-rate, only occurs if viscosity is nonuniform in � , which in the end
requires nonuniform state variables.

For a decay-type loss mechanism, however, the governing equations make no explicit
specifications about change in � ; they are zero-dimensional ordinary differential equations
with derivatives only in time $ . In this case, the spatial structure of shear and the state
variables (i.e., � dependence) will be governed by their initial conditions and how their
values at each point in the layer evolve independently of any neighboring points (i.e., if
there were � derivatives, the evolution of a variable would depend on neighboring values).
Localization in this case thus requires the coexistence of at least two independently evolv-
ing states: a slow deformation state (involving either cold temperatures, low void-densities
or large grainsize and thus high viscosity and low strain rates) and a fast deformation state
(low viscosity and high strain rates). A deforming layer that permits both states will, even
if the stress across the layer is constant, have hetergenous deformation with the fast de-
forming zone manifesting itself as the weak shear-localization. If only one deformation
state is allowed for a given stress, then deformation is necessarily uniform and there is
no localization. Even so, with the decay-type loss mechanism, the width and structure
of the localization is not determined by the governing equations but by the initial condi-
tions (which determine which state certain points in the layer evolve toward) and thus these
localizations are not truly self-focussing.

In the cases using a decay-type loss, all the different feedback mechanisms generate
at least two coexisting states, and thus permit some sort of shear-localization. Since a
single stress can be associated with two or more strain-rates, the effective stress–strain-rate
constitutive curve is (by definition) non-monotonic; this means that stress does not merely
increase with strain-rate as with simple rheological laws but will, over certain regions of
strain-rate, actually decrease with increased rate of deformation. The existence of stress-
loss regions is associated with stick-slip-type behavior, wherein the “slip” refers to stress
loss, and the “stick” to the high stress or resistance region that typically exists at smaller
strain-rates.

With the thermal feedback mechanism, three coexisting states are possible if the back-
ground temperature (on top of which viscous heating contributes temperature anomalies)
is small enough, on the order of (or smaller than) � D � �  � (which corresponds to the con-
dition (  � ? D�� ) where � is the activation enthalpy and  the gas constant; this is in
fact sufficient for any lithospheric temperatures of the order 1000 K. Moreover, the three
states only exist if the imposed stress is less than a critical value; at lithospheric tempera-
tures, however, this critical stress is so large that essentially any realistic lithospheric stress
will suffice to generate three solutions. These three solutions represent a cold viscous
state (associated with “stick” behavior); an intermediate-temperature (cool) state (associ-
ated with “slip” behavior); and lastly a hot low-viscosity state involving strength recovery
(i.e., stress once again increases with increasing strain-rate, albeit more gradually given the
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low viscosity). Both the cold/high-viscosity and hot/low-viscosity states are stable, while
the intermediate-temperature “slip” state is unstable. Thus any initial state wherin there are
temperatures both above and below the intermediate-temperature state will evolve toward
both the cold and hot states and thus lead to inhomogeneous viscosities and strain-rates, and
hence shear-localization. Since the system will evolve to one or more steady states, there
is no runaway instability leading to intense or nearly singular plate-boundary-like localiza-
tion. However, the hot/fast state typically has temperatures well in excess of the melting
temperatures of silicates and thus the subsolidus creeping flow model we have used to an-
alyze the thermal feedback mechanism is not valid at these temperatures; with melting,
however, shear-localization is due to be more pronounced.

The idealized damage feedback mechanism is mathematically perhaps the simplest of
all the feedbacks we considered here. In the case where loss is of decay-type, there are
two possible steady deformation states if stress is less than a maximum that is given by
a single dimensionless stress

"
��� � � ? D � (which we estimate to be dimensionally of the

order 100 MPa). One of these states correlates to a low-porosity/slow-deformation (stick)
state, and the other to a high-porosity/fast-deformation (slip) state. The low-porosity state
is stable, while the high-porosity one is unstable. An initial configuration in which there
are porosities both above and below the high-porosity state will lead to the porosities below
decaying to the low-porosity state, and porosities above undergoing a runaway toward the
maximum allowable porosity of 1. This suggests that with this simple feedback mechanism
a localization will involve a high porosity band that grows toward a completely voided
opening or macrocrack. In the case where the applied stress is greater than

"
� � � then the

entire system will undergo a runaway toward a porosity of ? ; i.e., the entire layer becomes
a highly damaged zone.

Lastly, in the grainsize feedback mechanism there are also two possible deformation
states as long as the grainssize dependence of viscosity is nonlinear (i.e., the parameter
� = ? ). However, in contrast to the other two feedback mechanisms, these multiple
states only exist if the imposed stress is larger than a minimum value, which itself depends
on several other parameters of the mathematical model but is dimensionally of the order
100 MPa or less. These two states involve small-grainsize/fast-deformation and a large-
grainsize/slow-deformation states, respectively. Unlike the other feedback mechanisms,
the fast-deformation state is stable and the slow one unstable. Thus any configuration
that starts off in the vicinity of the slow-deformation state will develop stable localized
regions at the fast-deformation state surrounded by slow-deformation regions that become
increasingly slower and larger in grainsize. If stress is less than the critical value to obtain
multiple states, then the entire system is undergoes grain-growth and progressive stiffening.

The three feedback mechanisms display similarities in that they allow coexisting multi-
ple deformation states. However they differ significantly in other aspects. In particular, for
the thermal and damage feedback cases, multiple states and thus shear-localization occurs
for stresses beneath a critical value. Above that critical stress, the thermal feedback only
allows a cold-viscous state, while the damage feedback allows no steady state and under-
goes a runaway to a totally damaged zone. Below the critical stress, the coexisting states
become more disparate as stress decreases, thus leading to more pronounced heterogeneity
in strain-rate, and thus greater intensity of localization. For the grainsize effect, multiple
states are allowed for stress above a critical value; for smaller stresses no steady state is
allowed and the system evolves to an ever stiffer and larger-grainsized configuration, while
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for higher stresses localization becomes more intense. Therefore, both the thermal and
damage feedbacks are in effect low stresses phenomena, while the grainsize feedback is a
high-stress phenomenon.

In contrast to the decay-type loss mechanism, a diffusive-type healing mechanism leads
to governing equations that depend explicitly on � ; the solutions to the equations thus pre-
scribe structure in � and thus permit self-focussing and localization without arbitrary de-
pendence on initial conditions. As with the decay-type loss, multiple solutions and thus
deformation states are allowed for a given imposed stress; however, these states do not
co-exist in the deforming layer since each state is prescribed by the governing equations
to exist over the entire width of the layer. For the thermal feedback mechanism, there are
three possible states wherein the coldest and hottest have more or less uniform viscosity
and very weak localization, and an intermediate state that involves moderate localization.
The existence of these states also depends on the background or boundary temperature; if
this temperature is too high then there is no intermediate localizing state, and thus in this
case it is clear that localization is a lower-temperature phenomenon (although the back-
ground temperature that permits localization is typical of lithospheric temperature of the
order 1000 K). For the damage feedback mechanism, there are two possible states: a low-
porosity/slow-deformation state with little or no shear localization, and one with a high-
porosity and rapidly deforming zone and thus very intense shear localization. Again with
both cases, localization only occurs beneath a maximum stress, and the smaller the imposed
stress the more intense the localization for the fast solutions, and the more uniform the
strain-rate for the slow solutions. Lastly, it appears that the damage feedback mechanism
permits much more intense localization than the thermal feedback, which also corresponds
to the two-dimensional calculations discussed briefly above.

The diffusive loss for the grainsize mechanism was not studied since it is unlikely to be
relavant for that mechanism. Moreover, the stability of cases with diffusive loss was not
studied here because it is not analytically tractable, and it would require many numerical
solutions to properly examine. However, the diffusive loss mechanism is likely to stabilize
states whose analogs in the decay-loss mechanism cases were unstable; this is because the
sharpening of a thermal anomaly during localization enhances diffusive loss while having
no effect in the decay-loss scenario. However, diffusion does not completely stabilize these
cases since it is known to still permit thermal instabilities and runaways to large-strain-
rate solutions (Yuen and Schubert 1977; Schubert and Yuen 1978; Fleitout and Froidevaux
1980). Nevertheless, it should be noted that instabilities and runaway effects can be su-
pressed if we impose a constant velocity across the shear layer, instead of a constant stress.
This is because shear-localization instability and runaway involve changes in boundary ve-
locities as well as strain-rates (e.g., Eqn. 71 to Eqn. 72 suggest that the boundary velocity
and the sharpness of the shear-localization zone both increase as localization intensifies);
however, if the boundary velocity is fixed then such instability is simply prohibited.

Finally, we should note that since the thermal feedback mechanism does not permit a
runaway instability (at least not without melting) it is perhaps the weakest of the localiza-
tion mechanisms (this is also evident in the structure of the steady-state solutions with dif-
fusive loss, at least relative to the damage feedback mechanism; i.e. compare the localized
solutions for Figs. 4 and 5). In contrast, the damage and grainsize feedback mechanisms
do allow runaway effects and/or intense localization and thus are perhaps the more likely
candidates to generate plate-boundary-like localizations in the lithosphere. The physics
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of these processes, however, are still not completely well understood and considerable re-
search remains to elucidate their nature. However, it is also important to note the possible
relation between the grainsize and damage mechanisms: both involve creation of surface
energy, through the creation of more grain boundaries by propagating dislocations in one,
and the creation of fracture surfaces through microcracking in the other, which are more or
less manifestations of the same physics. In the end, shear-localization in a geological and
geophysical context is a difficult but rich topic with considerable room for further progress
and discovery from theoretical, experimental and observational aspects.
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Géminard JC, Losert W, Gollub J (1999) Frictional mechanics of wet granular material. Phys Rev E 59:5881–
5890

Green H, Burnley P (1989) A new self-organizing mechanism for deep focus earthquakes. Nature 341:733–
737

Griffith A (1921) The phenomenon of rupture and flow in solids. Philos Trans R Soc London, Ser A 221:163–
198
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