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A two-phasemodel for compactionand damage
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Abstract. A theoreticalmodelfor thedynamicsof a simpletwo-phasemixtureis
presented.A classicalaveragingapproachcombinedwith symmetryargumentsis
usedto derive themass,momentum,andenergy equationsfor themixture. The
theoryaccountsfor surficialenergy at theinterfaceandemploys a nonequilibrium
equationto relatetherateof work doneby surfacetensionto theratesof bothpres-
surework andviscousdeformationalwork. Theresultingequationsprovideabasic
modelfor compactionwith andwithout surfacetension.Moreover, useof thefull
nonequilibriumsurfaceenergy relationallows for isotropicdamage,i.e., creation
of surfaceenergy throughvoid generationandgrowth (e.g.,microcracking),and
thusa continuumdescriptionof weakeningandshearlocalization. Applications
to compaction,damage,andshearlocalizationareinvestigatedin two companion
papers.

1. Intr oduction

The dynamicsof two-component,or two-phase(and in
generalmultiphase),media is a complex and well-studied
field [seeDrew andPassman, 1999]with innumerablenatu-
ral applicationsto sedimentandsoil mechanics[Biot, 1941;
Hill etal., 1980;BirchwoodandTurcotte, 1994;seeFurbish,
1997,andreferencestherein],glaciology[Fowler, 1984],oil
recovery andmagmadynamics[McKenzie, 1984; Spiegel-
man, 1993a,1993b,1993c],crystallizationin metalalloys
[Ganesanand Poirier, 1990], and slurries [Loper, 1992].
Analysis of dilatant plasticity [Mathur et al., 1996], rate-
and-statefriction modelsof earthquake dynamics[Segall
andRice, 1995;Sleep, 1995,1997,1998],andvoid-volatile
self-lubricationmodelsof the generationof plate tectonics
from mantleflow [Bercovici, 1998]alsoemploy theconcept
of two phasesby relatingporosityto aweakeningeffector a
statevariable.

Oneof themostcomplex issuesin themechanicsof two-
phasemediaconcernsthe physicsof the interfacebetween
the phases[Groenwaldand Bedeaux, 1995; Osmolovski,�
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1997]. Interfaceandsurfacedynamicsis alsoa vital field
for thestudyof rockmechanicsandmaterialscience[Jaeger
and Cook, 1979; Atkinson, 1987; Atkinsonand Meredith,
1987]. One of the primary manifestationsof an interface
is its intrinsic surface energy, partially expressedas sur-
facetension. Surfaceenergy andtensionarerelevant both
for melt dynamicsin the processof crystallization[Tiller ,
1991a,1991b; Lasaga, 1998] and percolationundercap-
illary forces [Harte et al., 1993; Stevenson, 1986]. It is
alsogenerallyrecognizedthat the damageof materialsin-
volves the generationof a surfaceenergy on newly devel-
oped cracksand voids [Griffith, 1921; Jaeger and Cook,
1979;Atkinson, 1987;AtkinsonandMeredith, 1987].

The effectsof surfacetensionhave beenconsideredfor
two-phasesystems[Drew, 1971; Drew and Segel, 1971;
Stevenson, 1986; Ni and Beckerman, 1991; Straub, 1994;
GroenwaldandBedeaux, 1995;Osmolovski, 1997],although,
to our knowledge,they have not beenself-consistentlyin-
corporatedin a closed,fully three-dimensional,two-phase
continuumtheory. In this paperwe derive thesimplestpos-
siblegeneralequationsfor a two-phasemedium,accounting
for thepossibilityof surfacefreeenergy existing on the in-
terfacebetweenthe two media. Although this surfaceen-
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ergy is oftenconsideredto be in staticequilibriumwith the
network doneby thepressurefieldsof thetwo phases[e.g.,
Ni andBeckerman, 1991],we proposea moregeneralrela-
tion in which surfaceenergy is generatedthroughnonequi-
librium energy sourcessuchasdeformationalwork. Thus
the theoryprovidesa simplemodelnot only of compaction
with andwithout surfacetensionbut alsoof thecreationof
surfaceenergy throughdeformation,andhencemicrocrack-
ing anddamage.However, the theory is basedon viscous
fluid mechanics,and thus it is most applicableto viscous
and/orlong-timescalemantle-lithosphereprocesses,suchas
magmadynamicsand plate boundaryformation through
ductilelocalizationmechanisms.

Althoughsomeof theequationsderivedin thismodeldif-
fer little from thosederived previously [Drew, 1971;Drew
andSegel, 1971;LoperandRoberts, 1978;Hills etal., 1983,
1992;McKenzie, 1984;Fowler, 1984,1990a,1990b;Richter
and McKenzie, 1984; Ribe, 1985,1987; Bennonand Incr-
opera, 1987;Scott, 1988;ScottandStevenson, 1989;Gane-
sanandPoirier, 1990;Poirier etal., 1991;Loper, 1992;Tur-
cotteandPhippsMorgan, 1992;Spiegelman1993a,1993b,
1993c; Gidaspow, 1994; Schmeling, 2000; seeDrew and
Passman, 1999],othersaresignficantlydifferentor areen-
tirely new. Thusit is necessarythat theformalismfor arriv-
ing atthetheorybeestablished;admittedly, thisformalismis
not in itself new, soits presentationwill beasbrief aspossi-
ble. In thefollowingsubsectionswewill deriveconservation
laws, which, in two-phasetheory, involve a particularaver-
agingscheme[Drew, 1971;Drew andSegel, 1971;Ganesan
andPoirier, 1990;Ni andBeckerman, 1991]. Althoughthe
averagingmethodhasbeendiscussedelsewhere,wewill re-
quireit to carryoutsomeof thederivation;thuswedescribe
it by example,i.e., throughconsiderationof the mixture’s
propertiesandtheconservationof masslaw.

To keepour theoryassimpleaspossible,we make the
following assumptions:

1. Both mediahave constantdensitiesandare thus in-
compressible.

2. Both mediabehave ashighly viscousfluids (suchthat
inertiaandaccelerationareneglected,i.e., forcesarealways
in balance),andtheir individualviscositiesareconstant.

3. The two-phasemixture remainsisotropic,i.e., on av-
erage(seebelow for how theaverageis defined),poresand
grainsarenotcollectively elongatedin apreferreddirection.
(Somediscussionof anisotropy, however, is includedin this
development.)

Nevertheless,the two-phasemixture will have noncon-
stanteffective densityandviscosity. Othersimplifying as-
sumptionswill bestatedasnecessary.

2. Mixtur eProperties

2.1. PhasePropertiesand Averaging

Wedefinethetwo phasesasfluid andmatrix to beconsis-
tentwith muchof the classicliteratureon this topic. How-

ever, wederiveall equationstomaintaintheirsymmetry;that
is, until we make a symmetry-breakingassumptionabout
an extremedifferencebetweenthe fluid phaseand matrix
phase,they arestrictly speakingboth incompressible,cons-
tant-viscosityfluids, andthushow we label themshouldbe
irrelevant. Thereforean interchangeof labelsmustresultin
thesameequations.We will referto this symmetryas“ma-
terial invariance.”

We definethe fluid andmatrix phasesto have densities��� and ��� andviscosities� � and � � , all of which arecon-
stant.Thetwo phaseshave true(or microscopic)velocities,�	
� and

�	�� within their respectivevolumes,andsimilarly for
pressuresandstresses.However, in a two-phaseor mixture
theory, we cannotknow thelocationof every parcelof fluid
or matrix; thuswemustaverageall quantitiesoversomevol-
ume; the sizeof this volumedeterminesthe validity of the
continuumlimit for two-phasetheory. This limit is analo-
gousto that for single-phasecontinuumtheoryin which the
volume over which propertiesare averagedmust be large
enoughto containsufficientnumbersof moleculesbut must
alsobe small enoughto distinguishgradientsin properties.
In two-phasetheorythevolumemustbelargeenoughtocon-
tain sufficient numbersof poresor grainsbut small enough
to resolve gradients. As pore andgrain sizescan become
macroscopic,thevolumesizeis potentiallyveryconstrained,
and thus it is mucheasierto violate the two-phasecontin-
uumlimit [Bear, 1988;Furbish, 1997;Drew andPassman,
1999].

Oncethe two materials,the matrix and fluid, are com-
bined,themixturehasadditionalpropertiesprescribedby a
distribution function which locatesporesof fluid or grains
of matrix (Figure1); we definethis distribution function �
which is 1 insidethefluid poresand0 in thematrix [Drew,
1971; Drew and Segel, 1971; Fowler, 1984; Ganesanand
Poirier, 1990;Ni andBeckerman, 1991]. The function � is
usedto averagepropertiesover fluid or matrix volumes.In
particular, porosity, i.e., thevolumefractionof fluid (assum-
ing the matrix is saturated),is an averagequantitydefined
as �� ���� ����� ��� ��� (1)

where
���

is thetotal volumeof anelementof mixture. The
massesof fluid andmatrix in the volume

���
are thus the

integralsof ��� and ��� over the fluid andmatrix volumes,
respectively� � � ����� � � ��� ��� � � � ����� � � � �"! �$#%� ��� (2)

which,becausethedensitiesareconstant,aresimply
� � � ��� ��� and

� � � � �&!  # ��� ��� . Thefluid velocity aver-
agedover thefluid volumeis 	'� , definedsuchthat 	 � � ���� ����� �	 � ��� �(� (3)

where	 � is oftenreferredto astheinterstitialvelocity, while
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Figure1. Schematicof acontrolvolume
���

with a mixture
of fluid (white) andmatrix (black). Shadingalsorepresents
the distribution function � which is 1 in the fluid and0 in
the matrix. The curve which marksthe boundarybetween
blackandwhiteasviewedin thefigureis theintersectionof
theinterfacebetweenthephasesandthesurfaceof thecon-
trol volume,asdenotedby )+* in (25). Arrows illustratethe
flux of fluid andmatrix mass,momentumor energy through
exposuresof fluid andmatrix at the surfaceof the control
volume. 	 � is theDarcy velocity. Thematrix velocity 	 � is simi-
larly definedsuchthat� �,!  # 	�� � ���� ���-� �	�� � �"! �$#.� �(/ (4)

Sincethetwo mediaareassumedincompressible,their true
velocities

�	 � and
�	 � aresolenoidal( 021 �	 � � 021 �	 � �3

); however, the averagedvelocities 	 � and 	 � are not
solenoidalsincethey have beenaveragedover poreor grain
volumesthatarevariablein spaceandtime.

2.2. Interfacial Ar eaDensity

An additionalpropertyof themixtureconcernsthefabric
of themixturewhich is specifiedby the locationandorien-
tationof theinterfacebetweenthetwo phases.Theinterface
locationandorientationaregivenby 04� , whichis in essence
a Dirac

�
function,centeredon the interface,timestheunit

normalto the interface(in fact,pointing from thematrix to
the fluid, in the directionof increasing� ). Thusthe net in-
terfaceareawithin avolume

���
is simply�65 * � �����47 08� 7 � ��/ (5)

However, in a mixtureformalismwe cannotknow theloca-
tion andorientationof the interfacebetweenfluid andma-
trix, andthuswe mustdefinean averagedproperty. In this
paperwe assumeisotropy of the interface(i.e., on average,
it hasno preferreddirection) and that in the control vol-
ume

���
, thereis anaverageinterfacialareaperunit volume,9 � �65 *;: ��� [seealso Ni and Beckerman, 1991). Since

the systemis isotropic,we assumethat this singlequantity

is sufficient to characterizethedensityof theinterface.The
areadensity 9 is necesarilya function of porositysinceit
mustvanishwhenthemediumbecomesa single-phasesys-
tem, i.e., when

<� 3
or 1. As discussedby Ni and Beck-

erman[1991], onesimplepossibility is that 9>=  � �?!  # ;
however, wegeneralizethis assumptionto9 � 9
@ BA � �"!  #.C � (6)

where 9 @ , D , and E are assumedconstantsthat dependon
the materialpropertiesof the phases.Although the general
theorypresentedheredoesnot dependon theexact form of
the function 9 �  # (andindeed,other forms of the function
arepossible),we adopt(6) in the following applicationpa-
pers[Ricard et al., this issue;Bercovici et al., this issue].
Wenext briefly considertheimplicationsof theconstant9
@ ,
while theconstantsD and E arefurtherconstrainedin section
2.2.3.

2.2.1. Constant F&G . The constant9H@ is an important
propertythroughoutthedevelopmentandapplicationof this
model;it hasunitsof m I�J andis inverselyrelatedto charac-
teristic pore and grain size. Although we cannotoffer an
exact demonstrationof this relation, it can be understood
by a very simple conceptualexample [after Spry, 1983).
We considera volume wherethe poresand grainsare the
sameshapeandsizefor all porositiesandthesegrainsand
poresfit togetherexactly; for simplicity, we choosea cubi-
calvolumewith sidesK andcubicalporesandgrainsof side�MLNLOK . The total numberof poresandgrainstogetherisPNQSRTQ � � K : ��#.U , andif we have

P
pores,thenthe porosity

is

V� P : PNQWR.Q . For a small numberof pores(
PYXZP[QSRTQ

)
the net interfacial surfaceareais

5 * � P4\ ��] , while for a
large numberof pores(or small numberof grains)whereP_^`P QSRTQ

wehave
5 * � � P QSR.Q ! P # \ �$] (for example,withP QSRTQ !M�

pores,thereis justonecubicgrainof side � ). Thus
a symmetricformula that gives both limits for

5 * would
be
5 * �ba P � P QSRTQ ! P # : P QSRTQ;c \ � ] , or since

P � P QSRTQ 
,5 * � P QSRTQ  � �,!  # \ ��] . Theinterfaceareapervolumeis9 � 5 *P QSR.Q � U � \�  � �?!  # � (7)

which, by comparisonto (6), implies that 9 @ � \ : � (and
clearly valuesof D and E different from unity accountfor
noncubicporeandgrainshapes).Although this is a highly
idealizedexample,it illustratesthat 9
@ is characteristicof
the inverseof poreor grain size � . For silicates,grain and
poresizesrangefrom micronsto milimeters[Spry, 1983],
andthus 9
@ canbeasmuchas

� 3$d
m IeJ .

2.2.2. A noteon anisotropy. Althoughweassumeiso-
tropy, afew wordsonextensionsto anisotropy arewarranted
sinceoneof theeventualapplicationsof this theoryinvolves
cracked mediawhich are distinctly anisotropic. Informa-
tion aboutfabric anisotropy is necessarilyrelatedto inter-
faceorientation,and thus we expect that an averagedten-
sorpropertydefiningthis fabricshouldinvolve 04� . In gen-
eral,anisotropicproperties,suchasvariousconductivitiesof
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laminae(e.g.,alternatinglayersof conductingandinsulating
material),canbeconstructedfrom second-orderdyadsbased
on thenormalsto the laminae.Moreover, fabricanisotropy
shouldalsodependon interfaceareadensitysincea region
with zeroareadensityshouldbeisotropic.We thereforede-
fine a fabrictensorto involvedyadsbasedon 08� andto re-
cover, underisotropy, the areadensity 9 ; onesuchobvious
possibilityis F � ���� � ��� 0f��08�7 08� 7 � �(/ (8)

which is symmetricto insurereal principal (eigen-)values.
Obviously, thetraceof this tensoris g,h � F # � 9 andthusif
thesystemis isotropic F � JU 9ji , wherei is theidentityma-
trix. (Notethata fabrictensormightalsoinvolveothercom-
ponentssuchasdyadsof theinterfacetangentklnm 04� , wherekl is a unit vectordirectedaway from anarbitrarycoordinate
origin.) Wepostulatethatmany potentiallyanisotropicprop-
ertiesof themixture(e.g.,permeability)shouldberelatedtoF . However, F involvesfive independentquantitiesin ad-
dition to 9 (six total), requiringadditionalclosurerelations.
As eventheisotropictheoryis complex enough(asshown in
this paper, it leadsto 10 unknownsrequiringasmany equa-
tions),we will remarkon anisotropy and F wherethey are
likely to be includedif desiredbut will not attemptto pro-
vide a rigorousanisotropictheory(seeSleep[1998] for dis-
cussionof anisotropy in rate-and-statetheoriesof earthquake
dynamics).

2.2.3. Interface curvature. As discussedin later sec-
tions, we considersurfacetensionon the interface,whose
resultingforce intriniscally involves interfacecurvature; it
is thususeful to relate 9 (and F ) to the averagecurvature
of the interface.If we assumeisotropy andthat 9 is indeed
a function of


, then one can show that � 9 : �  is related

to the sum of the interfacecurvatures. This can be un-
derstoodby a simpleconceptualexample(althoughit also
arisesgenerallyfrom considerationsof thermodynamicson
an interface;seeAppendixA2). Considera modelof an
isotropic two-phasemediumas being madeup of spheri-
cal pores(or grains,althoughwe will refer only to pores
for simplicity), and that the distribution of sizesof pores
is not extremely broadwithin a selectedvolume

���
. At

the simplestlevel, consider
P

sphericalporesof onesize,
i.e., eachwith radius h ; in this caseeachelementof inter-
facehastwo identicalprincipal curvaturesequalto

� : h (in
contrastto, say, a cylinder of radius h , which alsohastwo
principal curvatures,but one is 0, while the other is

� : h ).
Moreover,

<� Ppo$q h6U : �Sr ��� # and 9 � Ppo�q h6] : ��� ; thus� 9 : � V� � � 9 : �$h�# : � �  : ��h�# �ts : h , which equalsthe sum
of theprincipal curvatures.(Although 9 :  hasdimensions
similar to curvature,it is not the sumof the principal cur-
vaturesascanbe seenin this example;onecanalsorepeat
theexamplewith cylindersto seethat � 9 : �  not 9 :  prop-
erly representsthe sum of curvatures.) If the volume

���
has

P
sphericalporesandthe radiusof the uwv�x pore is h * ,

thenthe averagecurvatureis
� : h � � � : P #zy|{*~} J � : h * , the

porosity is

_��a o�q : �Wr ��� # c y {*~} J h6U* � Ppo$q h U : �Wr ��� # ,
and 9 � � o$q : ��� #zy�{*�} J h6]* � Ppo$q h ] : ��� . If the distri-
bution in sizesof poresis sufficiently narrow within thevol-
ume(which canmoreor lessbe selectedarbitrarily), then� : hN� � : h , h6��� h � (where� is2 or3),andthus � 9 : �  will
still be roughly the sumof the averagecurvatures. There-
forethesumof interfacecurvaturesis representedby � 9 : � 
(again,seealsoAppendixA2).

Adopting(6), we find that� 9�  � 9H@ D BA IeJ � �"!  #.C IeJ � �"! B� # (9)

where

���� D : � Dj��E�# . It is clearthatthesignandmagnitude
of theaverageinterfacecurvaturedependonporosity. When

is verysmall,themediumcontainsmostlysmalldispersed
poresof fluid, and thus the averagecurvatureis large and
positive(again,curvatureis definedhereto bepositivewhen
theinterfaceis concaveto,or encloses,thefluid andnegative
whenit is convex to thefluid or enclosesmatrix); when


is

closeto 1, the mediumcontainssmall dispersedgrainsof
matrix,andthecurvatureis thuslargeandnegative. Indeed,
in the limits that

 ^ 3
and

 ^ �
the averagecurvature

shouldbe infinite in magnitude.This suggeststhat both D
and E are L � . Moreover, the changein sign of the curva-
tureoccursat

��OB��� D : � DN�<E�# . If thesystemis purely
symmetric,then D � E andthe changein sign of curvature
is at

�� � : s . However, for real systems,D and E canbe
verydifferent.For foams(in which theair is thefluid phase)
thecurvatureremainspositive to very largeporosities,sug-
gestingthat D �`E . For silicatemelts,interconnectednessof
melt (i.e.,dihedralanglesL \ 3 @ ) andevendisaggregationat
low melt fractions[seeHarte et al., 1993]suggesta behav-
ior oppositeto foam;thatis, thecurvaturebecomesnegative
at low porosity, or D X E .

As indicatedabove,surfacesaregenerallydefinedto have
two distinctprincipalcurvatureslocally (i.e.,onaninfinites-
imal areaelement)and the sum of thesecurvaturesdeter-
minesthesurfacetensionforce[LandauandLifshitz, 1987].
With isotropy andaveraging,thesecurvaturesareeitherthe
sameor (becauseof randomorientiationof elongateor lam-
inar grainsandpores)their volumeaveragesarethe same.
However, with anisotropy dueto coherentalignmentof elon-
gate or laminar grains and pores, the distinct curvatures
would be manifestedasa fabric in the medium,even after
averaging.Sincetheaveragingis over a volumecontaining
whole poresandgrains, it involvesall the possiblecurva-
tureson the surfaceareaof a pore (or grain), not just the
two local curvatureson an areaelement.Thusthe volume
averageof thecurvatureof aninterfaceshouldhave at least
threecharacteristicprincipalcurvatures(e.g.,considerellip-
soidalpores)whichweassumeareextractablefrom thefab-
ric tensorF , in particular ��F : �  . We assumethat thethree
principal curvaturesarethe principal valuesof ��F : �  ; for
example,thesumof theseprincipalcurvaturesis atensorin-
variantequalto g,h � ��F : �  # � � 9 : �  , which is consistent
with our isotropic formulationfor the sumof the principal
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curvatures.

3. Conservation of Mass

Changesof fluid massinsidethe volume
���

dependon
the loss of fluid throughthe surfaceof the volumeand, if
appropriate,the rate at which matrix is convertedto fluid
andvice versa(e.g.,by meltingandsolidification). For this
paperwe arenot concernedwith transferof massbetween
phases,and thuswe neglect this conversionrate,which is
straightforwardto include(seesection6) andhasbeendis-
cussedextensively in previous studies[Hills et al., 1983,
1992;McKenzie, 1984;Spiegelman, 1993a,1993b,1993c].
Therateof changeof fluid massis thus���� � �-� ��� �$� � � ! � �.� ��� �	'� 1Bk� ��� 5 (10)

wheretheareaintegral on theright-handsiderepresentsthe
net rateof expulsionof fluid throughporesexposedon or
intersectingthe volume’s surfacearea

�65
(Figure1) and k�

is theunit normalof theareaelement� 5 . Clearly, we wish
to expresstheareaintegral in termsof thedivergenceof the
averagevelocity 	'� and the porosity


. However, this is

only permissibleundercertainconditionsrelatingto thesize
of the volume

���
. In particular, considera cubic volume

centeredonthepoint ��� �.�B�T� # andextendingovertheranges� ! � � : sM� � � � � � � : s , � ! ��� : s�� � � � � ��� : s ,� ! �6� : s�� � � � � �6� : s , where
��� � � � �����6� . We can

examinetheareaintegral over just onefaceof this volume,
say at the faceparallel to the

� ! �
planeand locatedat� � � � : s . We first requirethatany integral (at any � ) over

thearea
�����6�

includesasufficientsamplingof poresin order
to becontinuousin � , andthusthearea

�����6�
cannotbetoo

small.However, we alsorequirethat
� � is smallenoughfor

this integral to vary no morethanlinearly in � . With these
limitations,andapplyingtheintegralmean-valuetheoremto
linearfunctions,we maywrite� ���-� � �¡  ]� I � �-  ] �V¢��

� ¢�  ]¢ I � ¢�  ] �£��T¤ ��� � � ��¥e¦ � � ¦   ]� �� � �
¦ � � ¦¦ � �V¢�� � ¢§  ]¢ I � ¢�  ] ���-�

� �-  ]� I � �¡  ] �£ � ¤ ��� � � � ¥ � �� £ � ¤ ��� � � � : s �T�B�T� #  ��� � � � : s �.�B��� # �����6�¨/ (11)

This givesa practicalexampleof thesizeconstraintson
� � ,���

, and
�6�

. For this integral the area
�����6�

cannotbe too
small,but

� � cannotbetoo large;consideringtheotherarea
integrals,the sameconstraintexists for all permutationsof� � , ��� , and

�6�
, andthusthe lengthsegmentscanbeneither

too big nor too small.

The integratedfluxesthroughthe otherfive facesof the
volumeleadto similar resultsasin (11); the sumof all the
resultingareaintegrals,dividedby

���
, canbereplacedwith

a divergence,assumingsmall enough
� � , ��� , and

�6�
, and

thus(10)becomes� ��� �>0©1 a  	'� c � 3 / (12)

(However, since
� � , ��� , and

�6�
arenot, in fact,infinitesimal,

spatialdifferentialoperatorsin two-phasetheoryareonly ap-
proximationsof their normalcontinuumcounterparts.)An
identicaltreatmentcanbemadefor themassof matrix ma-
terial leadingto thesymmetricequation� � �"!  #�¨� �>0©1 a � �,!  # 	 � c � 3 / (13)

Material invariancebetween(12) and (13) meansthat re-
placementof ª by « , and


by
�¬! 

, in (12) gives(13)
andvice-versa.

We may also define mixture and differencequantities,
given,for any generalquantity  , by® �¯  � � � �"!  #% � � °  �  � !  � � (14)

respectively;
® is, of course,materiallyinvariantor symmet-

ric, while
°  is antisymmetric. We canthuscombinethe

massequationsin two ways, i.e., by first adding(12) and
(13) to yield 0©1 ®	 � 3 (15)

(where
®	 is the mixture or meanvelocity) and secondby

finding � �"!  # m (12)
!  m (13), to obtain� ��� � ®	 1�0 ±� 0_1 a  � �,!  # ° 	 c (16)

(where
° 	 is thevelocitydifferenceor phaseseparationve-

locity). An interchangeof the implicit subscriptsª and «
leavestheseequationsunchanged.

The entire developmentabove is, of course,fairly triv-
ial andhasbeenpresentedinnumerabletimes and in vari-
ousforms in previouspapersandtexts [Drew, 1971;Drew
and Segel, 1971; McKenzie, 1984; Ganesanand Poirier,
1990; Ni and Beckerman, 1991]; we have only provided it
to demonstratethe formalism,aswell as the necessaryas-
sumptions,for obtainingfurther conservation laws, which
aregraduallymorecomplex andnovel.

Before proceedingto the other conservation laws, it is
necessaryto establishonemore relation regardingvolume
integralsinvolving productsof fluid or matrix velocity and08� ; these,in particular, arisewhenwe considerstressten-
sors. Sincethe individual phasesareassumedincompress-
ible, their truevelocitiesaresolenoidal( 0²1 �	 � � 0t1 �	 � �3
). Thereforetheaverageof thedivergenceof thefluid ve-

locity over thefluid volumeis zero,leadingto���� � ��� � 0©1 �	'� #;��� �� ���� ���-� a 0_1 � �	 � �$# ! �	 � 160f� c � � � 3 (17)
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Given the sameconstraintsand assumptionsleadingfrom
(10) to (12), this relationyields���� � �-� �	 � 160f�$� � � 0©1 a  	 � c (18)

Wearriveby similarargumentsat thesymmetricrelationfor
thematrix velocityfield���� � ��� �	 � 1³0 � �"! �$#.� � � 0©1 a � �"!  # 	 � c (19)

Both(18)and(19)areobviouslyrelatedto changesin poros-
ity through(12) and(13).

4. Momentum Equations

For simplicity, we assume(alongwith many otherstud-
ies, e.g., McKenzie[1984]; Richter and McKenzie[1984];
Spiegelman[1993a,1993b,1993c])thatbothfluid andma-
trix undergo creepingflow; that is, their forcesarealways
in balanceand thus accelerationand inertia areneglected.
An extensionof this to higherReynoldsnumbersystemsis
tractable[LoperandRoberts, 1978;Hills etal., 1983,1992;
Bennonand Incroprera, 1987;GanesanandPoirier, 1990;
Ni andBeckerman, 1991;Loper, 1992].

The total force on the fluid phaseis the sumof surface
andbodyforcesactingon thefluid partof thevolume;since
theseforcesareassumedto balance,we arriveat3 � � �.� �´ � 1 � �
k� � 5 #-� � �.�eµ�¶ � 1.k� * � 5 � � ��� � �$· �$� �(� (20)

where
�´ � is the true total stresstensorin the fluid, · is

the fluid body force per unit mass,
¶ � is the effective in-

terfacial stresstensor, and
5 * and k� * are the areaandunit

normalof the fluid-matrix interface(and,obviously, k� *¬¸! 04� : 7 08� 7 ). Thefirst integralontheright-handsideof (20)
representsthenetsurfaceforceactingon thefluid thatis ex-
posedat thesurfaceof thevolume

���
, while thesecondin-

tegral representsthe net interfacial force, that is, the force
actingon thefluid at thefluid-matrix interface(alsoreferred
to astheinteractionforce[Drew andSegel, 1971;McKenzie,
1984]). Giventhat thefluid is anincompressibleisoviscous
medium,then �´ � � ! �¹ � i � �º � � (21)

where
�¹ � is thetruefluid pressureand�º � � � �¬» 0 �	'� � a 0 �	'� c�¼%½ (22)

is the trueviscousdeviatoric stresstensor(

a c ¼
implies ten-

sortranspose).Moreover, we assumefor now that thebody
force per massis the samefor both phasesand is entirely
gravitational: · � !�¾ k¿ , where

¾
is gravitational accelera-

tion. Wecanusepreviousargumentsinvolvingareaintegrals
(again,seethe discussionsurrounding(11)) to rewrite (20)
as 3 � ! 0 a  ¹ � c �À0_1 a  º � c ! � �  ¾ k¿ �VÁ � � (23)

where
¹ � is thepressureaveragedover thefluid volumeandº � is the viscousstresstensoraveragedover the fluid vol-

ume.Theinteractionforce Á � resultsfrom forcesactingon
thefluid acrosstheinterface.A similar developmentfor the
matrix resultsin3 � ! 0 a � �"!  # ¹ � c �À0Â1 a � �"!  # º � c! � � � �"!  # ¾ k¿ �VÁ � (24)

where
¹ � and º � aretheaveragepressureandstressin the

matrix, while the interactionforce Á � resultsfrom forces
actingon thematrixacrosstheinterface.

Giventhecomplexity of theinterfacebetweenthephases,
preciseknowledgeof its orientationandlocationusingthe
continuum(i.e.,volumeaveraging)approachis notpossible.
Thusthe interfacial forces Á � and Á � aredifficult to quan-
tify andhavebeenthesubjectof muchdiscussionin thetwo-
phaseliterature [Drew and Segel, 1971; McKenzie, 1984;
Ganesanand Poirier, 1990]. They aregenerallytreatedas
effective body force vectors,which, in the absenceof sur-
facetension,areequalandopposite[Drew andSegel, 1971;
McKenzie, 1984]. However, they arenot equalif the inter-
facehasan intrinsic surfacefree energy and tension. The
surfacetensionforce actingon a control volume

���
is ap-

parentwhenconsideringthetotal forceonthewholevolume���
of thefluid-matrixmixture,which leadsto3 � ! 0 ®¹ �>0©1 ®º ! ®� ¾ k¿ � ���� �ÄÃ µ �Å kÆ ��Ç (25)

(see(14) for the definition of mixture quantities
®¹
,
®º , and®� ), where

�Å is thetruesurfacetension(with unitsof È�É I�J ),
whichdiffersfrom surfacefreeenergy (denotedby Ê�* in sec-
tion 5 andAppendixA2), )Ë* is the curve which tracesthe
intersectionbetweentheinterfaceandthesurfaceof thecon-
trol volume(seeFigure1), ��Ç is a line elementalong ) * , andkÆ is a unit vectorthat is bothnormalto the line element��Ç
and tangentto the interface(Figure 2)[seealso Drew and
Segel, 1971]. However, we seekthe effective surfaceten-
sionforceactingon anelementof surfacearea� 5 (a small
segmentof

�65
); theelement� 5 itself containstheintersec-

tion curve Ì * , which is a small portion of ) * . As shown in
AppendixA1, we can,with isotropy, replaceÍ � µ �Å kÆ ��Ç withÅ 9 k� � 5 , whereÅ is a reducedsurfacetension(thereduction
is typically Î � � # ; seeAppendixA1). Thussummingoverall
areaelementson

�65
, the net surfacetensionforceper unit

volumebecomes� � : ��� # Í �T� Å 9 k� � 5 , in which casethenet
forceequationassumestheform3 � ! 0 ®¹ �>0©1 ®º ! ®� ¾ k¿ �>0 � Å 9 # / (26)

The last term in (26) is an effective surfacetensionbody
forceonthetotalmixture.(If wewereto allow for anisotropy,
then Í � µ �Å kÆ ��Ç would bemostlikely relatedto Å F 1�k� � 5 , in
which case,the surfacetensionforcewould bereplacedby
a term proportionalto 0Ï1 � Å F # ; seealsoDrew and Segel
[1971].)
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Figure 2. Side view of a crosssectionof a segment of
the mixture adjacentto the surfaceof a control volume(as
shown in Figure1); the solid line on the left of the rectan-
gularsampleshows thesurfaceboundary, while thedashed
boundariesindicatethat thesampleis connectedto the rest
of the volume. Black andwhite materialis the sameasin
Figure1; that is, they representeitherfluid or matrix. The
unit tangentsto theinterface(at theintersectionwith thesur-
faceof thecontrolvolume) kÆ andunit normalto thesurface
of thecontrolvolume k� areillustrated;seetext surrounding
(25)and(26).

The forceequationsfor eachphase,(23) and(24), must
sumto equal(26), indicatingthatÁ � ��Á � � 0 � Å 9 # (27)

[seealsoDrew and Segel [1971]. Equation(27) might be
easilymisconstruedasa stressjump conditionsinceit ap-
pearssimilar to thejumpconditionfor theinterfacebetween
two fluids with surfacetension[LandauandLifshitz, 1987;
Leal, 1992].Sucha jumpconditionis requiredataninternal
boundarywhoseshape,location,andorientiationareknown
and that separatestwo adjacentbut distinct fluid volumes
that do not individually fill the entire domain. Given the
continuumapproachof two-phasetheory, however, thespe-
cific locationandorientationof the interfaceareunknown;
theinterfaceaswell asthetwo phasesaretreatedascontin-
uousquantitiesthatexist at all pointsin thedomain. (Even
if anisotropy is allowed,thetensorF givesonly theaverage
orientationof fabric due to the interfacebut not the loca-
tion andorientationof the interfaceitself.) Thus the two-
phaseequationsdo not requirean internalboundarycondi-
tion, and the inappropriateimposition of sucha condition
would lead to an overdeterminedproblem. Therefore(27)
doesnotindicatethatthereis ajumpin theinteractionforces
but ratherthat the interactionforcesthemselveseachcon-
tain somecomponentof the surfacetensionforce. Since
surfacetensionactsthroughthecommoninterfacebetween

fluid andmatrix, thenthe volume-averaged,effective body
force 0 � Å 9 # actsequallyonequal-sizedparticlesof fluid or
matrix (i.e., it doesnot actdifferentlyon the two phasesas
does,say, thegravitationalbodyforce);we thusassumethat
at any point (or infinitesimalvolume)in themixturea frac-
tion


of this forceactson thefluid, while a fraction

�?! 
actson thematrix. We thereforewriteÁ � �<Ð �  0 � Å 9 # (28)Á � � ! Ð � � �,!  #T0 � Å 9 # (29)

where

Ð
is the componentof the interactionforcesthatact

equallyandoppositelyto eachother;(28)and(29)automat-
ically satisfy(27).

Theforce

Ð
hasfew constraints.By materialinvariance,Ð

hasto be a functionof vectorvariablesthatareantisym-
metric to a switch of the subscriptsª and « , suchas

° 	
and 0  . Moreover,

Ð
mustaccountfor (1) the viscousin-

teractiondueto relative motion betweenthe fluid andma-
trix and (2) pressureacting at the interface. The simplest
viscousinteractionforce that preservesGalileaninvariance
(frameindependence)is Ì � 	 � ! 	 � # � Ì ° 	 , where Ì is a
scalarto bediscussedfurtherbelow [Drew andSegel, 1971;
McKenzie, 1984]. The pressurecontribution to the interfa-
cial forcemustallow for equilibrium(nomotion)whenpres-
sureis constanteverywhere;for example,at leasta portion
of this forcemustcancelthepartof thepressureforceterm
in (23) thatgoesas

! ¹ � 0  (andsimilarly for (24)). There-
fore themostbasicform of theinterfaceforceisÐ8� Ì ° 	 � ¹¬Ñ 0  � (30)

where
¹ Ñ

is someaveragedpressurethatmustbe thesame
in eachphaseand is invariant to a switch of ª and « . In
general,wewrite

¹ Ñ �ÓÒ ¹ � � � �(! Ò # ¹ � , where

Ò
is some

unknown weighting that is

� �
and that, like


, switches

to
�Ô! Ò

if ª and « are switched. (Note that in writing¹ Ñ
asa functionof

¹ � and
¹ � , we assumethat theinterfa-

cial averagepressuresarelinearly dependenton theaverage
pressuresin eachphase;seeDrew andPassman[1999] for a
discussionof interfacialpressure.)Also, if thesystemwere
anisotropic,therelationfor

Ð
wouldneedto beadjusted;see

thecommentat theendof section4.3.

It is importantto recognizethat

Ð
representsthe equal

and oppositeforce of one phaseagainstthe other, not the
forceof eitherphaseagainstsurfacetensionontheinterface.
In fact,onecanseeby (26) thatall theotherforcesinvolving0 ®¹ and 021 ®º , etc. work againstthesurfacetensionforce0 � Å 9 # . (Indeed,the correctstressjump condition arises
from integrating(26) abouta vanishinglythin volumecen-
teredon theinterface,accountingfor thatthefactthat 9 be-
comesa Dirac

�
functioncenteredon theinterface(see(5)),

not by integrating(27) abouttheinterface.)ThustheforcesÁ � and Á � includesurfacetension,while all theotherforces
potentiallybalancesurfacetension.

Therefore,uponsubstitutingÁ � � Ì ° 	 � a Ò ¹ � � � �"! Ò # ¹ � c 0  � BÕ � Å 9 # (31)
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into (23)and(24),we obtain(aftersomerearrangement)3 � ! ¬a 0 ¹ � � ��� ¾ k¿ c �À0_1 a  º � c�VÌ ° 	 � � �"! Ò # ° ¹ 0  �  0 � Å 9 # (33)3 � ! � �"!  # a 0 ¹ � � � � ¾ k¿ c �À0©1 a � �"!  # º � c! Ì ° 	 � Ò ° ¹ 0  � � �"!  #�0 � Å 9 # (34)

We canestimate

Ò
by consideringthe conditionsfor no

motion; this requireszero velocities, zero nonhydrostatic
pressuregradients,zeroviscousstresses,anda constantÅ
(sinceagradientin surfacetensionin aviscousmediumcan
only be balancedby viscousstresses;seeLandauand Lif-
shitz, 1987;Leal, 1992).In this case,(33)and(34)become� �"! Ò # ° ¹ 0  �  Å 0 9 � 3 (35)Ò ° ¹ 0  � � �"!  # Å 0 9 � 3 � (36)

which canonly bothbetrueif

Òp� �"! 
.

On the assumptionthat

Ò>� �Ö! 
for all situationsour

equationsbecome3 � ! ×a 0 ¹ � � � � ¾ k¿ c �À0©1 a  º � c�VÌ ° 	 � ¬a ° ¹ 0  �À0 � Å 9 # c (37)3 � ! � �"!  # a 0 ¹ � � � � ¾ k¿ c �À0©1 a � �"!  # º � c! Ì ° 	 � � �"!  # a ° ¹ 0  �À0 � Å 9 # c / (38)

Theforceequationsin theform of (37)and(38)areby no
meanscompletesincethereare variousissuesthat remain
to be developed,suchas the natureof the surfacetension
force, the form of thevolume-averagedviscousstressesº �
and º � , themeaningof Ì , etc. We will dealwith thesese-
quentially.

4.1. SurfaceTensionForceand Interface Equilibrium

As discussedin section2.2theinterfaceareadensity9 is
assumeda function of


wherein � 9 : �  is the sumof av-

erageinterfacecurvatures.With this assumptionthesurface
tensionbodyforcein (26)becomes0 � Å 9 # � Å � 9�  0  � 9 0 Å / (39)

The first term on the right-handsideof (39) representsthe
surfacetensionforce due to interfacecurvature,while the
secondterm is a force due to gradientsin Å itself which
resultfrom temperaturefluctuations(or gradientsin surfac-
tants;LandauandLifshitz, 1987;Leal, 1992).Gradientsin Å
yield effectssuchasMarangoniconvectionwhereintemper-
atureanomaliesin anexposed,thin fluid layercauseimbal-
ancesin surfacetensionat the layer’s free boundarywhich
in turn drivemotion(seereview by Berg etal. [1966]).

In the caseof no motion, as in (35) or (36) using

ÒØ�� ! 
, therecan be no gradientin Å (which can only be

balancedby viscousstressesin afluid [LandauandLifshitz,
1987;Leal, 1992]), andthe force equationsyield the equi-
librium surfacetension(Laplace’s) condition(assumingthe
forcebalanceholdsfor all 0  )¹ � ! ¹ � � Å � 9�  (40)

(seealsoAppendixA2). However, we mustemphasizethis
condition is only true when the systemis static or quasi-
static,adiabatic,andin equilibrium; a moregeneralcondi-
tion will beexploredin section5.

4.2. AverageViscousStressTensors

To obtaina closedtheory, it is necessaryto expressthe
averageviscousstresstensorsº � and º � in termsof aver-
agevelocities 	 � and 	 � . While theassumptionthat these
stressesobey the constitutive laws for single-phasemedia
[e.g., Loper and Roberts, 1978; McKenzie, 1984; Loper,
1992]is somewhatadhoc,we canprovidesomeconstraints
which partially justify suchanapproach.

By our definition of volumeaveraging,the averagevis-
cousfluid stressº � is givenby º � � � � ���� � ��� » 0 �	 � � a 0 �	 � cÙ¼ ½ ��� � (41)

giventhat � � is assumedconstant.Derivationof therelation
betweenº � and 	 � requiresanevaluationof theintegral of
thetruevelocitygradients;by consideringonegradientterm
we canwrite (againgiventhesameassumptionsassociated
with (11))���� � ��� � 0 �	'� #;��� � � ���� � ��� a 0 � � �	'� # ! � 08�$# �	'� c � �� 0 �  	 � # ! ���� ����� � 08��# �	 � � �(/ (42)

The othervelocity gradientterm canbe treatedidentically,
leadingto º � � � �?Ú 0 �  	 � #�� a 0 �  	 � # cÙ¼ ! �SÛ � � Û ¼ � #§Ü � (43)

where Û � � ���� � �-� � 08�$# �	 � � ��/ (44)

ThetensorÛ � containsbulk informationaboutthefluid ve-
locity at the interface;its evaluationis by no meanstrivial
and hasbeengiven a variety of treatments[Ganesanand
Poirier, 1990;Ni andBeckerman, 1991].Although Û � can-
notbesolvedexactlyin termsof averagevelocities,thereare
severalfundamentalconstraintsthatcanhelpusestimateits
form:

1. Û � mustcontaina termto insurethatthestresstensorº � is Galileaninvariant. In particular, it musthave a part
thatdependson � 0  #.Ý � , whereÝ � is someasyetundefined
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velocity; in this case,thestresstermsdependenton velocity
in (43)will appearas � 0  # � 	'� ! Ý � # therebyremoving the
velocityof theframeof reference.

2. Thetraceof Û � is givenby (18)andthusg,h �WÛ � # �� 0Â1 	 � � 	 � 1³0  / (45)

3. Thewholestresstensorº � itself musthavezerotrace;
thatis, it remainsthedeviatoricstressevenaftervolumeav-
eraging. This is requiredbecauseregardlessof how we do
any volumeaveraging,the fluid andmatrix arealways in-
compressible,andthuswhenthemixtureis exposedto auni-
form isotropicstress,it shouldnotundergocompressionand
only its pressureshouldincrease.

4. Since Û � is linear in
�	'� and � , it is reasonableto

expect that it be linear in 	'� and


(as also suggestedby

(45)).

5. Û � mustcontainuniqueterms;that is, it cannotonly
bemadeup of termsthatmerelycancelall of 0 �  	 � # , thus
leadingto a null stresstensorº � . In otherwords,althoughÛ � � 0 �  	'� # would satisfyall thepreviousconstraints,it
wouldalsoleadto º � � 3 , which is unacceptable.

6. Finally, any stresstensorº � resultingfrom thechoice
of Û � musthaveapositivedefinitecontributionto thedissi-
pationfunction, i.e., 0 	 �4Þ º �8ß 3 , in orderto satisfythe
secondlaw of thermodynamics;seesection5 for discussion
of dissipation.

Thesimplest(but by no meansunique)form of Û � that
satisfiesthesesix basicconstraintsisÛ � � � 0  # 	 � � �r  0_1 	 � i / (46)

This leadsto a stresstensorgivenby º � �| � ��à 0 	 � � a 0 	 � c ¼ ! sr 0_1 	 � i á � (47)

which is, of course,the simple deviator for nonsolenoidal
velocity fields andis thusintuitively appealing.By similar
arguments,andby symmetry, wearriveattherelationfor the
averagematrixstresstensor� ��!  # º � � � ��!  #;� �Oà 0 	�� � a 0 	�� c ¼ ! sr 0©1 	��Öi á /

(48)
Neither (47) nor (48) explicitly containthe bulk viscosity
term usedby McKenzie [1984] since we have precluded
compressionunder a uniform isotropic stress. However,
isotropic compactionis allowable if the two phasesexpe-
riencedifferent isotropic stresses;for example,the matrix
is isotropicallyloadedbut thefluid is left freeto escape(D.
McKenzie,personalcommunication,2000);asdiscussedin
section5 (seethe explanationsurrounding(68)), this pro-
cessis treatedthroughthe pressuredifference

° ¹
instead

of througha bulk viscosityeffect.

Theconstitutivelaws(47)and(48)aresomewhatsimpler
thanthosearrivedatby variousworkers[Ishii, 1975;Ni and

Beckerman, 1991] andnot very different from what others
[Loper and Roberts, 1978;McKenzie, 1984] have assumed
wouldbetheconstitutivelaws. However, while (47)and(48)
arenot deriveduniquely, they arearrivedatmorerigorously
than usual,and their deductionfrom the above considera-
tionspartially justifiestheir simpleform. Finally, we briefly
note that if we were to consideranisotropy it undoubtedly
occursin the tensor Û � (and its matrix counterpart)as it
derives from integralsof the quantity 08� ; we would thus
assumethatananisotropicversionof Û � would involve F ,
therebyleadingto ananisotropicstresstensor.

4.3. Interaction Coefficient Ì and Darcy’sLaw

Thefluid forceequation(37) reducesto somethingsim-
ilar to Darcy’s law when º � (or moreprecisely� � ) is neg-
ligible and

° ¹ 0  �Ó0 � Å 9 # � 3 (implying thateitherthe
pressuredrop balancessurfacetensionor that surfaceten-
sionandthepressuredroparebothzero),i.e.,Ì � 	'� ! 	�� # � !  � 0 ¹ � � ��� ¾ k¿ # (49)

[seealsoMcKenzie, 1984]. If thereis sufficientinterconnect-
ednessof pores,(49) suggeststhat the coefficient Ì should
be relatedto the permeabilityof the matrix andthe viscos-
ity of thefluid, i.e., Ì � � �  ] :�â , wherethepermeabilityâ
is a function of porosity


[McKenzie, 1984;Ganesanand

Poirier, 1990]. However, this relationfor Ì cannotbe used
generally(i.e.,for arbitraryviscosities)sinceit wouldviolate
materialinvariance(i.e., symmetryto a switchof subscripts« and ª ) of the forceequations(37) and(38). We canes-
timate a more generalexpressionfor Ì by consideringthe
balanceof viscousforcesat the fluid-matrix interface. We
assumethat (1) the forcesrepresentedby Ì ° 	 arisefrom
viscousdeformationat the pore and grain scale,i.e., due
to deformationof fluid or matrix within the poreor grain;
(2) the scalesfor the viscousforce per volume in the two
phaseshavesimilar forms;and(3) theseforcesmatchat the
interface.Theseassumptionsleadto a relationshipbetween
viscousforcescales:� � 	 � ! 	 *� ]� � � � 	 * ! 	 �� ]� �

(50)

where 	 * is the interfacevelocity and
�-ã

is the typical size
of anelementof phaseä (meaninga fluid poreif ä � ª and
a matrix grain if ä � « ). (Equation(50) accountsfor the
fact thatasin simpleshearacrossa boundary, if 	��æåØ	 * ,
then 	 * å²	'� .) By solving for the interfacevelocity 	 * in
termsof 	'� and 	�� , wecanestimatetheviscousforcescale
(eithersideof (50))andequateit to theinterfaceforceonthe
fluid, leadingtoÌ � 	 � ! 	 � # � � � � � � 	�� ! 	'� #� � � ]� ��� � � ]� / (51)

If weassumethat
� � and

� � arerelatedto permeabilityâ
and(like permeability)areassumedto be functionsonly of
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porosity


, thento preservesymmetryof theequations(ma-

terial invariance),they mustberelatedto thesamefunction
of porosity, i.e.,� � � � �  # � � � � � �"!  # / (52)

If wewishto recoverDarcy’slaw, thenin thelimit � � X � �
we obtain ç�è Éé�ê   é6ë�ìNí Ì � � �  ]â �  # � � �� ] �  # � (53)

which implies we would use
� �  # �ïî â �  # :  . As ex-

pected,permeabilityis relatedto poreand/orgrainsizeand
thuscontainsinformationaboutthemixture’s fabric; there-
fore â is necessarilyalsorelatedto the interfacedensity 9
(seesection2.2). If poreandgrainsizesareuniquelyrepre-
sentedby permeability, thena generalform of Ì isÌ � � � � �  ] � �"!  #.]� � â � �"!  #  ] �M� � â �  # � �,!  # ] � (54)

which hasthepropersymmetry.

The dependenceof permeabilityon porosity has vari-
ousforms [Bear, 1988;Furbish, 1997], althoughtheseare
largely basedon empiricalestimatesin which the matrix is
immobile ( � � �ð� � ). For small porositiesoneoftenuses
thesimplemodel â �  # � â @  � [seeSpiegelman, 1993c,and
referencestherein]. If thereis not sufficient interconnected-
nessof poresand � � is not

X � � , thenuseof Darcy’s law
asa constraintis not valid, althougha relationof the form
given in (51) is probablystill generalenoughto even cap-
turerelativemotionof isolatedbubblesin a matrix [e.g.,see
Batchelor, 1967].

Regardlessof whetheror not we usepermeabilityand
Darcy’s law, it is clearthat Ì dependson grain and/orpore
sizeandthusshouldberelatedto the interfaceareadensity9 (seesection2.2). Thus,if thesystemwereanisotropic,we
would likely replaceÌ with a tensor ñ that is relatedto F ,
andtheinteractionforce Ì ° 	 would bereplacedby ñ 1 ° 	 ;
by the sametoken,an anisotropicpermeabilityalsoshould
bedeterminedby F . Moreover, thepartof the force

Ð
that

representsapressureactingontheinterface(see(30))would
likely beproportionalto 0©1�F insteadof 0  .
5. Energy Conservation, SurfaceEnergy, and
Damage

Sofar, wehavederivedeightconservationequations:two
continuityequations(12) and(13) (or alternatively (15) and
(16)) from conservationof massandsix forceequations(37)
and(38). However, evenwithout anisotropy, this systemis
still underdeterminedsincewe have nineunknowns,poros-
ity


, six velocities	 � and 	 � (or alternatively

®	 and
° 	 ),

andtwo pressures
¹ � and

¹ � (or alternatively
®¹

and
° ¹

).

To someextent, theninth relationthatwe seekis a con-
strainton thepressuredifference

° ¹
. For example,apossi-

ble ninth equationwould be thesimpleequilibriumsurface

tensionrelation(40);while this is a legitimateequation,it is
only valid for zeroor weakmotionandassumesconditions
of thermodynamicequilibriumandisentropy (seeAppendix
A2), which arenot generalconditionsandareinappropriate
for problemsinvolving large viscousforcesand/orrapidly
deformingsystems.To incorporatedeformationandviscous
stress,it is temptingto positavectorjumpconditionontotal
stresssuchas

° º 1�0  ! ° ¹ 0 f� 0 � Å 9 # � which would
beanalogousto aninterfacecondition[LandauandLifshitz,
1987;Leal, 1992]in which 0  servesascrudeproxyfor the
unit normalto theinterface.However, asstatedearlier, such
conditionswouldbevalid only if theinterfacewerewell de-
lineatedand thus requireda boundarycondition acrossit.
With theaveragingimplicit in amixturetheorytheinterface
is not delineated;it is, instead,mathematicallytreatedasa
continuousquantity that exists at all points in the domain
with aparticularconcentration(in thiscase,areapervolume9 ); thusavectorjumpconditionwouldbeinappropriateand
would imposeanoverdeterminednesson thesystem.

Perhapsthesimplestrelationfor
° ¹

, theequilibriumsur-
facetensioncondition (40), is generallyderived from ba-
sic thermodynamics(i.e., conservation of energy assuming
equilibrium,or minimum energy, andisentropicconditions
[Landauand Lifshitz, 1987; Bailyn, 1994]); seeAppendix
A2. In thissectionweattemptto infer aninthequationto ef-
fectively constrain

° ¹
from amoregeneralthermodynamic

approach,i.e., conservationof energy far from equilibrium
andwith entropy production.

Ourbasicenergy conservationlaw differslittle conceptu-
ally from that derivedpreviously [McKenzie, 1984;Poirier
et al., 1991]; the time rate of changeof internal energy
within a control volume

���
is governedby (1) the rateof

loss of this energy through the surfaceof the volume via
bothmasstransportanddiffusion;(2) therateatwhichwork
is doneon the volumeby the net surfaceandbody forces;
and(3) therateof internalenergy or heatproduction.In our
system,however, the internal energy containedwithin

���
exists in not two but threephases,i.e., the fluid andmatrix
phasesandtheinterface.Wewill first write down theenergy
conservation law andthendiscussthe variousassumptions
thathave goneinto it. If ò � and ò � arethe internalenergy
per unit massof the fluid and matrix phases,respectively
(averagedover the volumesof their respective phases)andÊ�* is the energy per unit of interfacearea(averagedover a
smallvolumeof themixture),thentherateof energy change
pervolumeis givenby�����ó  ��� ò � � � �,!  # ��� ò � ��Ê�* 9�ô ��õ ! 0_1³ö! 0©1 �  ��� ò ��	'� � � �"!  # ��� ò �?	�� �MÊ�* 9 ®	 #�À0_1 � !  	'� ¹ � ! � �"!  # 	�� ¹ ��  	 � 1 º � � � �"!  # 	 � 1 º � � ®	 Å 9 #!  	 � 1 � � � ¾ k¿ # ! � �"!  # 	 � 1 � � � ¾ k¿ # � (55)

where

õ
is theinherentrateof energy (heat)productionper

unit volume, ö is the diffusive energy flux vector(e.g., the
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heatflow vector).Thesecondtermon theright of (55) rep-
resentstherateof energy transportacrossthesurfaceof the
volume(Figure1), thethird termrepresentstherateatwhich
work is doneby surfaceforcesonthesurfaceof thevolume,
and the last two termsrepresentthe rateat which work is
doneby the body forceson the interior of the volume. As
basicasthis equationappears,several implicit assumptions
necessaryfor its derivationshouldbediscussed:

1. As appropriatefor our creepingflow system,changes
in kinetic energy areneglected[seealsoMcKenzie, 1984].

2. In (55) thenonlinearproductsbetweenvariousdepen-
dentquantities(in particular, velocitywith energy, pressure,
or stress)appearto berepresentedonly with theproductsof
the volume-averagedquantities. This representationis not
entirelyaccurateandthereforewarrantssomediscussion.In
particular, saywe have two true fluid quantities

�5
and

�÷
,

andtheir averages
5

and
÷

aredefinedin thestandardway,
e.g.,

 5 � � � : ��� # Í ��� �5 ��� � . Thenwe canalsowrite that�5 � 5 � 5�ø and
�÷ � ÷ � ÷ ø , wherethe averagesof the

perturbations
5�ø

and
÷ ø

arezero.Thevolumeaverageof the
product

�5
and

�÷
differsfrom theproductof

5
and

÷
, i.e.,���� ����� �5 �÷ �$� � �¯ 5 ÷ � ���� ���-� 5 ø ÷ ø ��� �(/ (56)

The evaluationof the last term on the right is, of course,a
classicproblemin turbulencemeanfield andclosuretheo-
ries. In problemsof heatandchemicaltransportin porous
media this term is typically parameterizedinto a quantity
called dispersion,which mathematicallylooks very much
like diffusion[Bear, 1988;Furbish, 1997]. While this type
of dispersive transportmight be a reasonablerepresenta-
tion of the bulk transportterms, i.e., the nonlinearprod-
uctsbetweenvelocitiesandinternalenergies,it is possibly
lessjustifiedfor theproductsbetweenvelocitiesandstresses
or pressures.A rigorousestimateof thesenonlinearterms
invariably requireshigher-orderclosuretheories,introduc-
ing yet moreequationsandunknowns. While this problem
might prove fruitful in future studies,we presentlyopt to
maintainthemaximumlevel of simplicity. We thusassume
that the nonlineartermsin questionarezero (meaninges-
sentially a zero correlationbetweenthe quantities

5?ø
and÷ ø

, regardlessof what thesequantitiesare)or that they can
be deemeda form of dispersionandthusabsorbedinto the
quantity ö (thus ö wouldnot necessarilyrepresentonly heat
flow). Neitherassumptionis completelysatisfactory, yet the
alternativesarelessso.

3. As discussedin section4, surfacetension,whenaver-
agedoveranareaelementonthesurfaceof acontrolvolume,
exertsa force per area Å 9 k� (where k� is the unit normalof
the areaelement). Sincethis effective averagedforce acts
equallyon particlesof matrix andfluid (given that it actu-
ally actsthroughtheir commoninterface)we assumethata
fraction


of it actson fluid which movesat velocity 	 � ,

while a fraction
�¬! 

actson matrix which movesat ve-
locity 	 � . Thus the net rate of work done(per area)on
materialat the surfaceby surfacetensionis assumedto be

�  	'� � � �+!  # 	�� #e1 � Å 9 k� # � ®	 1�k� Å 9 . Theintegralof this
rateof work over the surfaceof the control volume, taken
per unit volume,of course,leadsto the term appearingas0_1 � ®	 Å 9 # .

4. Thesurfaceenergy pervolume Ê * 9 is anaveragequan-
tity for thetotal volume

���
andis thusrepresentedasa vol-

umetricenergy density. Sincetheactualsurfaceenergy ex-
ists on the commoninterfacebetweenphases,the volume-
averagedeffective energy density Ê�* 9 is the samefor both
fluid andmatrix. Moreover, this energy is assumedtrans-
portedby thephasesalsoaccordingto theirvolumes;thatis,
while eachphasehasthe sameeffective energy density, of
thetotal energy in thevolume

���
thefluid carriesa fraction

at a velocity 	 � , andthematrix carriesa fraction � ��!  #
at 	 � . Thusthetotal bulk transportor flux of Ê * 9 is simplyÊ * 9 a  	 � � � �"!  # 	 � c � Ê * 9 ®	 .

Theenergy equationcanbereducedin thestandardway
by employing continuity equations(12), (13), and/or(15),
(16) andmomentum(force)equations(37), (38) to arriveat
(aftersomealgebra) � �
ù � ò �ù � � � �"!  # � ��ù � ò �ù � � ù Ê * 9ù �� õ ! 0©1�ö ! ° ¹ ù ù � ��Ì ° £ ]�  0 	 �úÞ º � � � �"!  #T0 	 �OÞ º � � (57)

where ù ã : ù � � � : ��� � 	 ã 1$0 (in which ä � ª or « ),ù : ù � � � : �¨� � ®	 1�0 , and
° £ ] � ° 	 1 ° 	 . However, we

have,with ourninthandnew equation,introducedthreenew
dependentvariablesò � , ò � , and Ê�* .

Becausebothphasesareconsideredincompressible,pres-
surecannotdowork to changetheinternalenergiesof either
phase. Thus, by basic thermodynamicsthe internal ener-
gies of the phasesò � and ò � are influencedonly by their
respective entropies,which are themselves only functions
of temperature;no adiabaticheatingcanoccur in this case
[cf. McKenzie, 1984]. If we assumethat the two phases
have differenttemperatures,we have not reducedthe num-
berof unknowns.Thus,for simplicity, wemakethecommon
assumptionthat the phasesarein thermalequilibrium with
eachother[e.g., McKenzie, 1984;Poirier et al., 1991] and
thushave thesametemperatureg ; thethermalequilibration
time betweenphasesis likely to go as �Wû 9 ] @ # I�J , where û
is thermaldiffusivity (which is of order

� 3 I d É ]&ü I�J ) and9
@4= � 3�d É IeJ (seesection2.2.1)and thus thermalequi-
libration betweenphasesis possibly nearly instantaneous
(at leaston geologicallyrelevant timescales).Thus,given
incompressibilityand a single temperature,we write the
energy increments(exact differentials) ��ò � � Ì � �$g and��ò � � Ì � ��g , where Ì � and Ì � arethe heatcapacitiesof
the two phases(whetherfor constantvolumeor pressureis
irrelevantif thephasesareincompressible).

For our simplesystem,both the surfaceenergy per areaÊ * andsurfacetensionÅ arefunctionsof g only andcanbe
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relatedaccordingto Ê * � Å ! g � Å��g (58)

(seeAppendixA2). The factor
! � Å : ��g is the entropy per

unit areaon the interfaceand is expectedto be a positive
quantity[Berg et al., 1966;Tiller , 1991a;Bailyn, 1994](see
AppendixA2; cf. Cardin et al. [1991]). Thusthe surface
tension Å is generallyfound to be a decreasingfunction ofg , e.g., Å � 5 � �?!�ý g�# [Bailyn, 1994].Sucha linear Å � g�#
functiononly canbetruefor sufficiently small

ý g sinceit is
implausiblethat Å , which representstheelectrostaticattrac-
tion of interfacial moleculesfor their own species,would
becomea repulsionat high enough g ; however, Å could
conceivably vanishat very high g , meaningthetwo phases
becomemiscibleif hotenough.Thusit maybemoreappro-
priateto statethat Å � 5?þ Izÿ�� [seealsoStraub, 1994].

Note that in writing (58) we assumethat Ê�* is relatedto
theeffectiveor geometricallyreducedsurfacetensionÅ (see
AppendixA1) andthusmustbethereducedsurfaceenergy
itself. This is donefor consistency with theassumptionthat
thesurfacetensionwork doneon themixture is enactedbyÅ (aspertheforceequation(26)). As notedin AppendixA1,
thereductionin surfacetensionwith theaveragingapproach
is not large,i.e., of Î � � # . Moreover, theunderestimationofÊ * can also be thoughtto partially compensatefor the ne-
glectof nonlinearfluctuationenergy sourcesandfluxes(see
assumption2, following (55), andtheclosingdiscussionin
AppendixA1).

With theaboveassumptionsregardingò � , ò � , and Ê�* the
energy equationcanberecast(with minoralgebra)as� Ì ù gù � ! g ùù � à � Å�$g 9 á �|õ ! 0©1§ö� � ! ° ¹ ù ù � ! Å ù 9ù � � (59)

where

� � Ì ° £ ] �  0 	 �úÞ º � � � �,!  #T0 	 ��Þ º � � (60)� Ì �| � � Ì � � � �"!  # � � Ì � � (61)ùù � ���� Ì à  ��� Ì � ù �ù � � � �,!  # ��� Ì � ù �ù � á / (62)

We have arranged(59) to describethe relationbetweenen-
tropy growth (whichwouldbetheleft-handsideof theequa-
tion, lessa factor of g ) andpossibleentropy sources(the
right-handside). The secondterm on the left-handsideof
(59)accountsfor interfacialentropy growth.

The last term on the right-handside of (59) Å ù 9 : ù �
accountsfor the growth in reversiblesurfaceenergy (per
unit volume)dueto surfacetensionwork (seeAppendixA2,
equation(A19)). We know from interfacestressjump con-
ditions[LandauandLifshitz, 1987;Leal, 1992]thattherate
of changeof this energy is drivenby mechanicalwork from

thepressureandviscousstressfields,which arerepresented
by thethird andfourth termson theright-handsideof (59),
i.e.,
�

and
! ° ¹ ù  : ù � ; however, only portionsof these

work terms,thereversibleportions,affect reversiblesurface
energy, while theirreversibleportionscontributeonly to en-
tropy production.

Even from simplesurfacetensionequilibrium we know
thatthepressuredifference

° ¹
affectssurfaceenergy. How-

ever, in nonequilibrium,whendilation or compactionis oc-
curring,a portionof thework doneby

° ¹
arisesfrom vis-

cousresistanceto dilation/compaction(seeAppendixB) and
is thusnecessariliyirreversible. We mustthereforeassume
thatpartof

° ¹
involvesirreversible(viscous)deformation,

andwe will refer to this part as
° ¹ *�� . The pressurework

actingon the interfaceto changereversiblesurfaceenergy
is thus

! � ° ¹ ! ° ¹ *�� # ù  : ù � , while theportioncontribut-
ing to entropy productionis

! ° ¹ *�� ù  : ù � . However, by
the secondlaw of thermodynamics,this sourceof entropy
productionmustbepositivedefiniteandthus° ¹ *�� � ! ÷ ù ù � � (63)

where
÷

is a positive coefficient with units of viscosity.
From micromechanicalmodels(seeAppendix B) one can
infer a simple materially invariant form of this coefficient
givenby ÷ ��� @ � � � �M� � # � �,!  # � (64)

where

� @ is a dimensionlessconstantof Î � � # .
As statedabove, in additionto pressurework on the in-

terfacewemustalsoallow for work doneontheinterfaceby
deviatoric stresses.Thedeformationalwork from all devia-
toric stressesis representedby the function

�
. In a single-

phaseviscousmedium,
�

is readilyidentifiedwith thedissi-
pationfunctionbecausethedeformationis entirely irrecov-
erableand thus

�
is a sourceof irreversibleentropy pro-

ductionor heating;this would alsobe true in a two-phase
mediumif the interfacehadno intrinsic energy. However,
in a two-phasemediumwith interfacialenergy thedeforma-
tional work canact againstsurfacetensionto increasethe
interfaceareaand thus depositenergy into interfacial sur-
faceenergy. We thereforeassumethata fractionof the de-
formationalwork associatedwith

�
goesto deformingthe

interface(i.e.,worksagainstsurfacetension)andis storedas
surfaceenergy ratherthandissipated;we considerthis frac-
tion conservativeor reversible(althoughweusetheterm“re-
versible”with somequalifications;seebelow). If we knew
theexact locationandorientationof the interface,we could
estimatethe portion of

�
working to deform the interface

(usingthestressjumpcondition[LandauandLifshitz, 1987;
Leal, 1992]);however, in anisotropicmixturetheorythein-
terface, like the phasesit separates,mathematicallyexists
at all points in the medium,and its presenceis only mea-
suredby the areadensity 9 . Thuswe cannotknow specif-
ically what part of

�
actson the interfaceand storesen-

ergy assurfaceenergy; we canonly assumethat a fraction
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�

is stored,i.e., is conservative,or involvesreversible
work. The remainingpart � �Ö! ªe# � is the dissipative con-
tribution. The quantity ª is thus the partitioning fraction
(where

3 � ª � � ), andwereferto thepartitioningof apor-
tion of

�
towardwork on the interfaceandthusto produc-

tion of surfaceenergy as“damage”,althoughthis definition
maydiffer from otherdefinitionsof damage[e.g.,Ashbyand
Sammis, 1990;HansenandSchreyer, 1992;Lemaitre, 1992;
Lyakhovsky et al., 1997]. Thepartitioningof deformational
work betweenadissipativeandastoredcomponenthasbeen
noted,in fact, sinceat leastthe 1920s[Farren and Taylor,
1925;Taylor andQuinney, 1934;ChrysochoosandMartin,
1989,andreferencestherein]andhasbeenconsideredin ex-
perimental[ChrysochoosandMartin, 1989;Chrysochooset
al., 1989,1996] andtheoretical[Lemondsand Needleman,
1986;Povirk et al., 1994]studiesof ductilevoid growth, di-
latantplasticity, andmetalcomposites.

In total,thereversibleportionsof theenergygrowth terms
isolatedon theright-handsideof (59) mustbalanceor can-
cel since processesinvolving only reversible energy and
work cannotcontribute to internalentropy production.(By
analogy, in compressiblesingle-phasefluid mechanics,me-
chanicalpressurework is generallyassumedto contribute
only to reversiblethermodynamicenergy; that is, mechan-
ical andthermodynamicpressuresareassumedequivalent.)
We thereforeobtaintwo energy relations� Ì ù gù � ! g ùù � à � Å�$g 9 á �¯õ ! 0©1�ö� � �,! ªe# � � � @ � � � �M� � # � �"!  # à ù ù � á ] (65)

Å ù 9ù � � ! ° ¹ ù

ù � ! � @ � � � ��� � # � �,!  # à ù ù � á ] �fª � � (66)

which arebothmateriallyinvariant.

Equation (66) describesa basic thermodynamicwork
statement.Thatis, thework necessaryto createnew interfa-
cial areaagainstsurfacetensionis providedby thenetwork
of the two pressurefields (actingagainsteachotheron the
interface)aswell asby viscousdeformationalwork. How-
ever, (66) alsoactsasa nonequilibriumproxy for the inter-
facestressjump (surfacetension)conditionin an isotropic
mediumfor which theinterfacelocationandorientationare
unknown and thus representedby averagedquantities. In
many ways it bearsthe sameform asa stress-jumpcondi-
tion, however it involvesratesof work for all points in the
effective mediumandis a scalarrelationthat providesone
equationfor

° ¹
.

In the limit that thereis zero or negligible motion and
deformationalwork on the interface (i.e., both ª � and÷ » ù  : ù � ½ ] � 3 ), (66)becomesà ° ¹ � Å � 9�  á ù ù � � 3 � (67)

which recovers(40), theequilibriumsurfacetensioncondi-
tion, assuming(67)holdsfor any ù  : ù � .

If surfacetensionanddamagearenegligible ( Å � ª � �3
), weobtaina relationfor simpleisotropiccompaction° ¹ � ! � @ � � � �M� � # � �,!  # ù ù � � (68)

whichoccursif eachphaseis exposedto adifferentisotropic
stress,andtheimbalancein stressesor pressurescausesone
phaseto squeezeandexpel the other from the mixture (D.
McKenzie,personalcommunication,2000). Equation(68)
predictscompactionof thematrix if

¹ � å ¹ � . Theprocess
of isotropic compactionis discussedby McKenzie[1984]
with a thoughtexperimentinvolving spherically-symmetric
flow [seeMcKenzie, 1984,AppendixC; seealsoRicard et
al., this issue). However, in that theory the fluid andma-
trix pressuresareassumedequivalent,andthusresistanceto
isotropiccompactionis providedby a bulk viscosityeffect
in the matrix. Sincethe bulk viscosityeffect is assumedto
resideentirely in the matrix, it canonly apply to a system
that is explicitly not materiallyinvariant;for example,only
the matrix can provide resistanceto isotropic compaction.
In the theorypresentedin this paper, resistanceto isotropic
compactionis insteadprovided by the pressuredifference° ¹

, the expressionfor which, illustratedin (68), is mate-
rially invariant,dependingon propertiesof bothphasesand
theinterfacetopology.

It is important to note anotherpossibledifferencebe-
tween this theory and someother previous models [e.g.,
McKenzie, 1984;Spiegelman, 1993a,1993b,1993c]. In the
limit Å � 3 , � � X � � and thus º � � 3 , but wherethe
matrix is deformingat a nonnegligible rate suchthat (68)
applies,thefluid forceequation(37)doesnot recoverasim-
plemodifiedDarcy’s law but instead	 � ! 	 � � !  Ì a 0 ¹ � � � � ¾ k¿ c ! � @ � �Ì � �,!  # ù ù � 0  � (69)

which suggeststhat the fluid pressuregradientswork not
only to move the fluid relative to matrix but alsoresistthe
force associatedwith collapseor dilation of a nonuniform
matrix (i.e., with nonconstantporosity). If thematrix is not
collapsing/dilating,or gradientsin porosity are negligible,
thenthemodifiedDarcy’s law is recoveredasexpected(i.e.,
Darcy’slaw is anempiricalrelationshipstrictly relevantonly
for stationarymatrixmaterial).

Equation(66)suggeststhatworkdonebydeviatoricstresses
to changeenergy on the interfaceis alwayspositive, which
may seemcounterintuitive. As a conceptualexample,con-
sidera bubblestretchedin shearor in an extensionalflow
such that the interface area and thus surface energy in-
creases;however, if onereversestheshearor extension,the
bubbleis theoreticallyunstretched(assumingit hasnot un-
dergoneacapillaryinstabilityandbrokenup)andits surface
areaandenergy decreases.However, (66) suggeststhat the
deformationalwork actsto makesurfaceareaandenergy in-
creaseregardlessof thedirectionof motion. This resultis a
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manifestationof the imposedisotropy of the system.Pores
areassumednever to developa preferredsenseof direction,
evenundershearor extension.Thus,in asense,stretchingof
a bubbleresultsin moresmallerbubbles,not a long bubble.
Reversingtheshearor extensionwill notby itself recombine
thebubblesbut insteadwill breakthemupevenfurtherwhen
it eitheractsto stretchthem(e.g.,in shear)or flattenthem(in
uniaxialcompression),creatingevenmoresurfaceareaand
energy. Thus,while thedeformationalwork canbestoredin
anondissipativefashionon thesurfaces,thecreationof new
surfaceareaandsurfaceenergy in this formulationcannot
be reversedby imposeddeformationalwork. Thusthe vis-
cousdeformationalwork on theinterface,or damage,would
have theappearanceof beingirreversible,althoughit is not
irreversiblein thetraditionalsensesinceit is, in fact,storing
energy on the interface; indeed,this energy can be recov-
eredas mechanicalwork if the bubblesrecoalesce(which
is allowed in this formulation[seeRicard et al., this issue;
Bercovici et al., this issue).Suchapparentirreversibility is
perhapsin keepingwith cataclasticprocesseswhereinde-
formationalwayscausesdamageregardlessof whetherthe
originalapplicationof deformationis reversed.

Constraintson the partitioning fraction ª are unfortu-
nately scarce. Empirical calorimetricstudieson deforma-
tion in metals [Chrysochoos and Martin, 1989; Chryso-
chooset al., 1989, 1996] have shown that of the order of
15-20%of the appliedwork goesinto surfaceenergy as-
sociatedwith structuraldefects,e.g., voids, microcracks,
andinterfaces(i.e., thetemperatureof themediumincreases
lessthanwould beexpectedif all theviscousdeformational
work went into dissipative heating),althoughfor the initial
phasesof deformationthis fraction is possiblyas high as
60% [Chrysochoosand Martin, 1989; Chrysochooset al.,
1989,1996]. However, the ª presentedheredoesnot nec-
essarilyrepresentthismeasuredpartitioningfraction.Given
that � Å : ��g²L 3 , thegrowth in interfacialentropy (thesec-
ond term on the left-handside of (65)) representsan ap-
parentsink of energy while the interfacial areais growing
(while ù 9 : ù � � � � 9 : �  # ù  : ù � å 3 ) andthusthiseffect
by itself, even with ª � 3

, would give the result that not
all of the input energy goesinto increasingthe temperature
of the medium. It would be difficult, in an experiment,to
separatethiseffect from directpartitioningof deformational
work into surfaceenergy.

Thepartitioningfraction ª is unlikely to beconstantand
clearly mustdependon the propertiesof the medium. For
example,theextentto which theviscousstressescanacton
the interfacemustdependon the interfaceareadensity, and
thuswe shouldexpect ª to dependon 9 andthus, implic-
itly, on


. Moreover, sincewe assumethat an amountof

deformationalwork ª � is storedassurfaceenergy on the
interface,we must also assumethat no suchwork can be
storedif theinterfacialsurfaceenergy is zero,i.e., if Å � 3 ;
thereforeª shouldbea functionof Å . Thevariability of ª is
discussedfurther by Bercovici et al. [this issue]who study
applicationsto shearlocalizationanddamage.

6. Summary: Final Governing Equations

For convenience,wesummarizethefinal governingequa-
tionsbelow:

1. Conservation of massyields two alternative setsof
equations,either a set involving transportof the separate
phases � ��� �À0_1 a  	'� c � 3 (70)� � �"!  #��� �À0_1 a � �"!  # 	 � c � 3 (71)

or a mixture/differencesetthatprescribetransportof poros-
ity andcontinuityof averagevelocity� ��� � ®	 1�0 ±� 0_1 a  � �,!  # ° 	 c (72)0©1 ®	 � 3 (73)

andwherethe averageanddifferenceof any quantity  are
definedas

® �   � � � �N!  #% � and
°  �  � !  � , re-

spectively. Massconversionratesdueto a phasechangeare
easilyincorporatedinto thetheoryby including

°	� : � � and! °
� : � � on the right-handsideof (70) and(71), respec-
tively;

°	� � � � ! � � , where
� � is the rate of conver-

sion of matrix mass(per unit volumeof total mixture) into
fluid and

� � is therateof conversionof fluid into matrix[see
alsoMcKenzie, 1984;Spiegelman, 1993a,1993b,1993c).In
using theseconversionratesonemust take careto include
themin the derivation of any subsequentrelationsthat use
themassconservationequations.

2. Themomentumor forcebalanceequationsalsoyield
two alternatesetsof equations;onedescribingthedynamics
of thetwo phases3 � ! ¬a 0 ¹ � � ��� ¾ k¿ c �À0_1 a  º � c� Ì ° 	 � ¬a ° ¹ 0  �À0 � Å 9 # c (74)3 � ! � �"!  # a 0 ¹ � � ��� ¾ k¿ c �À0_1 a � �"!  # º � c! Ì ° 	 � � �"!  # a ° ¹ 0  �À0 � Å 9 # c (75)

whereº � � � ��à 0 	 � � a 0 	 � c ¼ ! sr 0©1 	 � i á (76)º � � � �Oà 0 	�� � a 0 	�� cÙ¼ ! sr 0©1 	��&i á / (77)

We canalsoadd(74) and(75) to obtainthetotal or mixture
forceequation3 � ! 0 ®¹ �À0_1 ®º ! ®� ¾ k¿ �À0 � Å 9 # (78)

andfind

 m (75)
! � �+!  # m (74) to obtaina force-difference

or “action-reaction”equation3 � !  � �,!  # a 0 ° ¹ � ° � ¾ k¿ c�Ï0_1 a  � �?!  # ° º c ! ®º 1�0  ! Ì ° 	 / (79)
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3. The energy equationis separatedinto two coupled
equationsrepresentingthe evolution of thermalenergy and
rateof work doneon theinterface:� Ì ù gù � ! g ùù � à � Å�$g 9já �|õ ! 0©1§ö� � �"! ªe# � � ÷ à ù ù � á ] (80)° ¹ ù ù � � ! Å ù 9ù � �Vª � ! ÷ à ù


ù � á ] � (81)

wherewe have rewritten (66) to emphasizethat it is invari-
ably a relationfor

° ¹
; again,we canassumefor simplicity

that
÷ ��� @ � � � �M� � # : a  � �,!  # c with

� @"= Î � � # .
7. Discussionand Conclusion

7.1. SurfaceEnergy Scalesfor GeophysicalApplications

The scaleof the surfaceenergy density, or equivalently
thesurfacetensionforceperarea,goesas Å 9 @ . As discussed
in section2.2.1, 9 @ = � 3$d É I�J for a mixturewith micron-
sizedporesandgrains.For silicatesin contactwith melt or
water, Å is typically between

3 / �
and

�� É I ] [Spry, 1983;
Lasaga, 1998], while surfaceenergies relatedto fractures
canbemuchhigher, i.e., from

� 3 � É I ] to effective values
of nearly

� 3�3$3 � É I ] [Jaeger and Cook, 1979; Atkinson,
1987;AtkinsonandMeredith, 1987].To estimatetheimpor-
tanceof surfacetension,oneneedsto compareÅ 9
@ to other
relevant forces. The dimensionlessnumber Å 9H@ : � ° � ¾�� #
indicatesthe importanceof surfacetensionwith respectto
the relative buoyancy of the two phasesin a systemwith
lengthscale

�
. ThenumberÅ 9 @ � : � � ��� # indicatestheim-

portanceof surfacetensionrelative to a viscousstressof a
systemwith � � �ð� � , a velocity scale � , andchangesin
velocity over a lengthscale

�
. Thusfor silicatemelts(

° �
of the orderof a few hundredkilogramsper cubic meter),
surfacetensionis potentiallyimportantover lengthscalesof
a few hundredmetersto a few kilometers[seeRicard et al.,
this issue).For stressesandmicrocrackingin thelithosphere
(assuming� � å � 3 ]�U Pa s, �t=���� É���� I�J ), surfaceten-
sion forcesarealwaysrelatively small,asis to beexpected
(i.e., surface-tension-drivensegregationof rock andfluid in
cracked media is negligible, except for possibleeffects of
Ostwald ripening[Sleep, 1994]); however, the influenceof
surfaceenergy on shearlocalizationandcrackingis not so
muchasa driving force but asan intermediaryfor damage
andweakeningof thematerial[Bercovici etal., this issue).

7.2. Futur eApplications

Apart from a somewhat different treatmentof the pres-
sure drop

° ¹
, surface tension, stresstensors,and other

features,our massand momentumequationsdo not dif-
fer greatly from thoseof previous workers [e.g., McKen-
zie1984;Richter andMcKenzie, 1984;Spiegelman, 1993a,
1993b,1993c]. However, our proposedenergy equations

provide significantlynew physicsanddescribea variety of
effects.Ricard etal. [this issue]andBercovici etal. [this is-
sue]examinesomeof thesimplestandmostfundamentalap-
plicationsof this theory. For example,whenthereis little or
no deformationalwork doneon the interface( ª � � 3 ) and
surfacetension Å is temperature-independent(i.e.,

ý � 3
),

the temperaturefield hasno effect on thedynamics(except
throughthermalbuoyancy, which we have neglected,keep-
ing our phasesstrictly incompressible),andwe can ignore
the thermalenergy equation(80). In this case,we have a
simplerelationbetweensurfacetensionandthepressuredif-
ference

° ¹
, and we can thus examinecompactionin the

presenceof interfacial surfacetensionwhich hasmany ap-
plicationsto magmadynamics,oil migrationandotherprob-
lemsof percolationthrougha deformablematrix. This and
other compactionproblemsare examinedin Ricard et al.
[this issue]. Whenwe assumesignificantviscousdeforma-
tional work on the interface( ª � å 3 ) anda temperature-
independentÅ (i.e.,

ý � 3
), we againhave a decoupled

setof equationsin which the temperatureequationhasno
bearingon thedynamics,but theoccurrenceof damageand
shearlocalizationis potentiallydramatic.Theseapplications
to damageandshearlocalizationareaddressedby Bercovici
et al. [this issue].

Appendix A: SurfaceTensionand Energy
Considerations

A1. EffectiveSurfaceTensionForce

As shown in (25), thesurfacetensionforceactingon the
surfacearea

�65
of a volume

���
is Í Ã µ �Å kÆ ��Ç , where

�Å is the
true surfacetension, ) * is the intersectionbetweenthe in-
terfaceand

�65
, ��Ç is a line elementalong )+* , and kÆ is a

unit tangentto the interfaceat the intersection.On thearea
element� 5 (a small segmentof

�65
) is a portion of the in-

tersectioncurve Ì�* , andthe surfacetensionforce actingon
this elementis Í � µ �Å kÆ ��Ç . With isotropy, we assumethat the
net surfacetensionforce on � 5 is only normalto this area
element,i.e., in the k� direction(sincewith isotropy thecom-
ponentsof

�Å kÆ parallelto � 5 cancelwhensummedover this
smallarea);in otherwords,� � µ �Å kÆ ��Ç � k� � � µ �Å kÆ 1 k� ��Ç / (A1)

As with other variableswe wish to define an average
surfacetension. Ideally, we would average

�Å over the do-
main on which it exists, i.e., the interfacebetweenphases.
The areaof interface containedwithin the small volume� 5 � � � (where � � � is a line elementin the k� direction) isÍ � µ � kÆ 1¡k� # IeJ ��Ç�� � � , assuming� � � is smallenoughthatthein-
terfaceelementextendsacrossthelength � � � beforeleaving
thevolume.By definitionthisinterfaceareaisalso 9 � 5 � � � ,
andthus 9 � 5 � � � µ � kÆ 1ek� # IeJ ��Ç / (A2)
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Moreover, if wedefinethefactor

� � Í � µ kÆ 1 k� ��ÇÍ � µ � kÆ 1Bk� # I�J ��Ç � (A3)

then � � µ kÆ 1Bk� ��Ç � � 9 � 5[� (A4)

wheretypically
� L � , althoughit is of Î � � # ; for spherical

fluid poresor matrix grains,asshown below,
� � s : r . We

canthenaveragethesurfacetensionover theinterfacearea,
but with a weightingfactorthat facilitatesestimationof the
effectivesurfacetensionforce;i.e.,

� �Å�� � Í � µ �Å kÆ 1�k� ��Ç�� � �Í � µ kÆ 1 k� ��Ç�� � � � (A5)

which,cancellingthe � � � andusing(A1) and(A4), leadsto

� � �Å�� 9 k� � 5 � k� � � µ �Å kÆ 1 k� ��Ç � � � µ �Å kÆ ��Ç / (A6)

We definethereducedsurfacetensionÅ � � � �Å�� � (A7)

andsummingover all theareaelementsin
�65

, we arrive at
thenetsurfacetensionforceon thecontrolvolume� Ã µ �Å kÆ ��Ç � � �.� Å 9 k� � 5[� (A8)

which thenleadsto (26).

To illustratethe above formalism,we considera simple
exampleinvolving a randomdistribution of sphericalfluid
pores(or sphericalmatrix grains,eitherof which represent
isotropic fabric of the mixture). We also assumethe true
surfacetension

�Å is constant.

Any givenporehasradiush , andits centeris adistance�
normalto theareaelement� 5 (where � 5 is assumedmuch
largerthan

q h ] sothatit samplesasufficientcrosssectionof
pores;seeFigureA1). We assume� å 3 if it is on theside
of � 5 in the �pk� directionand ��L 3 if it is onthesidein the! k� direction(FigureA1). If

7
�
7 LÀh , thenthepore’ssurface

is cut by theareaelement� 5 andtheresultingintersection
of thesesurfaceshasacircumference

s q h î �"! � ] : h ] . The
unit tangentto theinterfaceat this intersectioniskÆ � � î �"! � ] : h ] #�k� � � � : h�#¡k� � (A9)

where k� points radially outward from the centerof the in-
tersectioncircle but in the planeof � 5 (FigureA1). Thus
the total surfacetensionforce pulling on this intersection
is

s q h � �[! �z] : h6]³# �Å k� (sincethe componentin the k� direc-
tion vanisheswhenintegratedaroundthe circumferenceof
the interesection).We assumethat any sphericalpore that
intersects� 5 hasequalprobability of beingcenteredany-
wherewithin a distanceh on either side of � 5 , i.e., with

r

h

t

n

s

^

^

dA ^

Figure A1. Side view of a crosssectionof an idealized
sphericalpore as discussedin Appendix A1. The pore is
of radius h centereda distance� from an areaelement� 5
(only a small part of which is marked by the solid vertical
line) on the surfaceof the control volume(a portion of the
control volumeis delineatedby dashedlines). Also shown
arethe relevant unit vectors,i.e., k� the unit normal to � 5 ,kÆ theunit tangentto the sphericalsurfaceat its intersection
with � 5 , and k� theunit vectorpointingradiallyoutwardfrom
thecenterof theintersectioncircle in theplaneof � 5 . If the
poreintersectsthecontrolvolume’ssurface,then � mustbe
within h of � 5 , i.e.,

! hpL �>LØh ; asshown, with thepore
centeredto theright of � 5 , � å 3 .! h�L!��LØ��h . Thus,if

P
(where

P åNå � ) is thenumber
of randomlydistributedporesof radius h centeredwithin a
distanceh of theareaelement� 5 , thenthetotal surfaceten-
sionforceon � 5 isPs h ��� �I � s q h �Å � �"! � ] : h ] # k� ��� � o r Ppq h �Å k� / (A10)

Thecentersof these
P

spheresarecontainedwithin thevol-
ume

s h6� 5 , which is itself centeredon theelement� 5 . Sta-
tistically, however, this volumeintersects

s P
pores,only

P
of which crossthecenterplanewith area� 5 (i.e., thereareP

poresintersectingeachof thevolume’stwo outersurfaces
with area � 5 , assumingthat since � 5 � q h6] , the other
surfacesarenegligible). Any oneof these

s P
poreswhose

centeris � awayfrom thevolume’scenterplane(wherenow! s h�L �ML s h ) hasa segmentof its surfacein thevolumes h6� 5 with area

s q h6] � s ! 7 � 7 : h6# . Thustheaverageporesur-
faceareapartially containedin

s h6� 5 (assumingrandomly
distributedpores)is � � : o h�# Í ] �I ] � s q h�] � s ! 7 � 7 : h6#.��� �|s q h6] .Thetotal surfaceareaof poresin thevolume

s h�� 5 is there-
fore � s P # s q h�] � o$Pfq h�] , which by definition is also9 s h�� 5 . Therefore s q�P h � 9 � 5[� (A11)
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andfrom (A10) thesurfacetensionforceon theelement� 5
is � s : r # �Å 9 k� � 5 ; thenetsurfacetensionon thesurface

�65
is

thus � Ã¨µ �Å kÆ ��Ç � � �.� Å 9 k� � 5[� (A12)

wherefor this illustrative examplethe reducedsurfaceten-
sionis Å � sr �Å (A13)

(andsince
�Å is constant,it is equalto

� �Å�� ). To confirmthat
this resultis thesameasthegeneralrelation(A8), oneneed
only determinethefactor

�
to seeif thereductionin surface

tensionis predictedcorrectly. Given
P

randomlydistributed
sphericalporescenteredwithin a distance� away from � 5 ,
(A3) yields

� � {] � Í �I � s q h � �"! �z] : h6]�#%���{] � Í �I � s q h6��� ��s : r (A14)

whichshowsthat(A7) is consistentwith (A13) (andlikewise
(A8) is consistentwith (A12)).

As discussedin section5, the energy transportlaws in-
volve the interfacial surfaceenergy per area Ê * , which is
relatedto the reducedsurface tension Å and not the true
surfacetension

�Å ; this meansthat the surfaceenergy is ef-
fectively underestimated.Thedidacticmodelwith spherical
porespresentedabove canillustratethe needfor underesti-
matingthisenergy in orderto beself-consistent.If wemove
the areaelement � 5 in Figure A1 a distance��� in the k�
direction, thenthe intersectioncurve Ì�* , which mustmove
tangentto the sphere’s surface,undergoesa displacement�#" � � ��� : î �"! � ] : h ] # kÆ . The energy variation (i.e., the
increasein surfaceenergy within thecontrol volume)asso-
ciatedwith this motionis (using(A9))� �$ * � ��� � � µ �Å kÆ 1Bk� ��Ç�� �% h ] ! � ] ��� � � µ �Å kÆ 1�k� ��Ç (A15)

wherethefirst integral accountsfor thework of thecompo-
nentsof thesurfacetensionperpendicularto thesurface � 5
and the secondintegral accountsfor the work of the com-
ponentsof the surfacetensionparallel to this surface. The
vector k� is constantandthereforecancommutewith thein-
tegral sign,in contrastto theradialvector k� , which depends
onthepositionalong Ì�* . Therefore,using(A6) and(A7), we
canwrite� �$ * � Å 9 ���¨� 5 � �% h ] ! � ] ��� � � µ �Å kÆ 1 k� ��Ç / (A16)

Clearly, 9 ���¨� 5 � � 5 * , which is the changein interface
areaassociatedwith the volumechange���¨� 5 . Moreover,
as
�Å is assumedconstant,the true surfaceenergy per area� �$ * : � 5 * � �Ê * � �Å is alsoconstant(seeAppendixA2), and

thus � �$ * � �Ê * � 5 * . WecanfurtherdefinethereducedenergyÊ * � Å , andthustheenergy changefrom (A16) is�Ê�*W� 5 * � Ê�*w� 5 *¨� �% h ] ! � ] ��� � � µ �Å kÆ 1�k� ��Ç (A17)

or, using � 5 * � 9 ���¨� 5 ,�Ê * � Ê * � �9 � 5 % h ] ! � ] � � µ �Å kÆ 1�k� ��Ç / (A18)

The secondterm in (A18) cannotbe treatedby an average
mixturetheorygiventhelackof generalinformationregard-
ing � , kÆ , and k� ; either one must adopt a specific ad hoc
modelof poregeometry(suchasour sphericalporemodel
above) andthussacrificegeneralityandmaterialsymmetry,
or onemustincludeanotherstatevariablecorrespondingtoÍ � µ �Å kÆ 1¡k� ��Ç andthusbefacedwith furtherclosureproblems.
This is anexampleof anenergy sourceassociatedwith non-
linear fluctuations,leadingto effectssuchasdispersionas
discussedin section5 (seeassumption2, following (55)).
For the sphericalporemodel, Ê * � � s : r # �Å , andthe reader
can readily verify that the integral term in (A18) accounts
for theremaining � � : r # �Å contribution to

�Ê * . However, since
the work of the averagedforcesmustcorrespondto a pro-
portionalchangein the averagedenergy, we must,for self-
consistency, useÊ§* insteadof

�Ê§* .
A2. Surfaceand Interface Thermodynamics

Thesurfaceenergy relationsusedin section5 arisefrom
the basic thermodynamicsof surfaces. For completeness,
we derive the more important conceptsregardingsurface
energy and tension,althoughthesecan be found in most
completetexts on thermodynamics[Bailyn, 1994; seealso
Safran, 1994].

To begin with, we note that in this appendix,for sim-
plicity, we make no distinctionbetweentrue, averaged,or
reducedquantities,assumingthesamethermodynamicrela-
tionsapply to all. Thusextra notationssuchastilde arenot
used.

Within a two-phasemixture the interface betweenthe
phasesis treatedas a third phasewith its own energy

$ *
andentropy & * . Giventhattheinterfaceis two-dimensional,
its spatialpresenceis measuredby aninterfacialarea

5 * (in-
steadof volume), which is worked on by the surfaceten-
sion Å (insteadof by pressure;however, asdefined,surface
tensionactsto reducesurfaceareawhile pressurewithin a
volumeactsto expandthe volume; thusin fact, Å replaces! ¹

).

For simplicity, we assumethat the interfacehasno mass
and thus no particlesof its own (seediscussionby Bailyn
[1994, chapter7]). We also assumethat the interfaceand
the two phaseshave the sametemperature(i.e., they arein
thermalequilibriumwith eachother)andthatover thecon-
sideredvolumesthe temperatureis predominantlyuniform
[Bailyn, 1994].

The interfacehas the standardthermodynamicrelation
(i.e., the combinedfirst andsecondlaws of thermodynam-
ics) � $ * � g���& * � Å � 5 * (A19)

and(by anexpansionof thescaleof thesystem[seeBailyn,
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1994])anEulerequation$ * � g'&e*z� Å 5 * � (A20)

which togetheryield theGibbs-Duhemrelation

& * ��g�� 5 * � Å � 3 / (A21)

From(A21) weseethattheentropy perareais

( * � & * : 5 * � ! � Å� g � (A22)

andthustheenergy perareaisÊ�* � $ * : 5 * � Å ! g � Å� g � (A23)

which we employ in section5. Moreover, substitutionof( * 5 * and Ê�* 5 * into (A19) leadsto � Å � � � Å : � g�#%�$g , which
shows that Å is only a functionof g .

From thesebasicthermodynamicrelationswe can also
seewherethe surfacetensionequilibrium equationcomes
from, along with its limitations. The sum of (A19) with
the analogousrelationsfor the two phases(whoseindivid-
ual compositionsarefixed)� $ ã � g?��& ã ! ¹ ã � � ã (A24)

(where,aswith therestof this paper, we useä � ª or « to
representthetwo phases)givesthevariationin total energy
as � $ QSRTQ � g?��& QSRTQ � Å � 5 * ! ¹ � � � � ! ¹ � � � � � (A25)

where
$ QSRTQ � $ � � $ � � $ * andsimilarly for & QSR.Q . Equi-

librium occurswhen total energy is minimized and thus� $ QSRTQ � 3 . The surfacetensionrelationalsoderivesfrom
the assumptionthat equilibrium is reachedisentropically,
andthus ��& QWR.Q � 3 aswell. To simplify matters,we con-
siderthatthevariationsin thevolumesof eachphasearenot
dueto changesin densitybut dueto changesin mixturera-
tios and that the total volumeof the systemremainsfixed
at
� QSRTQ

(imaginea rigid containerbeingfed by two different
fluids from separateinlet pipeseachat their own pressure).
Themixture ratio is representedby thevolumefractionsof
phaseª (thefluid)


andof phase« (thematrix)

�$! 
, which

arevariable;the phases’volumesarethus
� � �t � QWR.Q and� � � � �&!  # � QSR.Q . In this case,the equilibrium condition

leadsto Å � 5 * � � ¹ � ! ¹ � # � QSR.Q � �� 3 / (A26)

KeepingÅ andthepressuresfixedover incrementalchanges
in


and

5 * , we thus seekthe mixture ratio which yields
equilibrium;thatis, the


atwhichany work by thepressures

(againsteachother)to change


furtherwould bebalanced

by the work doneby the surface tensionto resist change
in the interfacial area. Assumingthat we can expressthe
interfacearea

5 * in termsof an areadensity 9 , we write5 * � 9 � QWR.Q ; in thiscasetheequilibriumconditionleadstoÅ � 9�  � � ¹ � ! ¹ � # � 3 � (A27)

which is analogousto our equilibrumsurfacetensionequa-
tion (40)assumingthat 9 is only a functionof


.

Appendix B: Inter phasePressure Differ ence
and a Simple Micr omechanicalModel of Pore
Collapse

We considera simplemodelof viscouscollapseof dis-
persedpores(or grains)in orderto estimatetherelationbe-
tween the interphasepressuredifference

° ¹
and viscous

flow. Surfacetensioneffectsareneglected;thesimplepore
or grain geometryis assumedto be conserved during col-
lapse,andthuswe ignorelarge-scaleshearstressesaswell
(i.e., thematrix is only compactingor dilatinguniformly un-
deranisotropicstress).We assumethatporesaredispersed
enoughso thatwe canconsidera singleporeunaffectedby
thecollapseof otherpores;thusweassumeporosity

 X �
.

As poresaresqueezedanddrained,we mustallow for in-
terconnectednessof fluid pathways therebyexcluding iso-
lated sphericalpores. Thus, for simplicity, we considera
cylindrical pore of radius

�
that is much smaller than its

length so that it can be treatedas an infinitely long cylin-
der. (This approachis similar to that consideredby Fowler
[1984] basedon ananalysisof boreholesin glaciersby Nye
[1953].) The cylindrical pore is filled with incompressible
fluid of viscosity � � andsurroundedby incompressiblema-
trix of viscosity � � . We further assumeconstantpressure
fields

¹ � and
¹ � for thefluid andmatrix, respectively, and

that thecylinder’s radiusremainsconstantalongits axis. In
this case,the equationsof motion for creepingflow allow
a fluid velocity in the axial directionof ) � �+* � (where�

is the along-axisdistance)and in the radial direction of, � � ! * h : s ( h is radial distance),where

*
is an asyet

unspecifiedconstant.We assumematrix motion is primar-
ily radial asit squeezesthe poreandby massconservation
hasmotion , � � ! * � ] : � s h�# . (This velocity is only ap-
proximatesinceit doesnot matchtheaxial fluid velocity at
theinterface,althoughit doesmatchthefluid shearstressat
the interface.) Continuity of normalstressat the interface
prescribesthat° ¹ � ¹ � ! ¹ � � � � � ��� � # * / (B1)

If we definetheporosityas

�� °.- q � ] : ° � (where
°.-

is thealong-axislengthof asegmentof theporeand
°Ô�

is a
volumecontainingonly this poresegment)andnotethatthe
radialvelocityat theinterfaceis , �z� � # � , � � � # � � � : � � ,
then

*ï� !  I�J �  : � � leadingto° ¹ � ! � � � �M� � # � � � / (B2)

Wecanapplythesymmetricdevelopmentto dispersedcylin-
drical matrixgrains(where

�"!  X �
) to arriveat° ¹ � ! � � � �M� � #�"!  � � � / (B3)

A materiallyinvariantrelationthataccountsfor both limits
of

 ^ 3
and

 ^ �
is° ¹ � ! � � � �M� � # � �"!  # � � � / (B4)
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Similardevelopmentscanbemadefor poresof othersimple
geometries,In general,wecanadopttherelation° ¹ � ! � @ � � � �M� � # � �,!  # � � � � (B5)

where

� @ is a dimensionlessconstantof Î � � # accounting
for unknown poregeometryandinterfacetopology. In our
continuumtheorywe mustreplace�  : � � with a materially
invariant material derivative, and as shown by thermody-
namicconsiderationsin section5, this would be ù  : ù � .
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