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Abstract

One of the more enigmatic features of the Earth’s style of mantle convection is plate tectonics itself, in particular the
existence of strike-slip, or toroidal, motion. Toroidal motion is uncharacteristic of basic thermal convection, but necessarily
forms through the interaction of convective flow and nonlinear rheological mechanisms. Recent studies have implied that the
empirically determined power-law rheologies of mantle silicates are not sufficient to generate the requisite toroidal motion.
A simple source–sink model of mantle or lithospheric flow shows that dynamic self-lubrication, which arises through the
coupling of viscous heating and temperature-dependent viscosity, is highly successful at generating strike-slip motion. In
particular, as the viscosity of the fluid system becomes more temperature dependent, the toroidal flow field makes an abrupt
transition from a state of weak, unplate-like motion to a state with intense and extremely focused structure. In essence, the
fluid dynamical model develops strike-slip faults.
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1. Introduction

1.1. The plate generation problem

Plate tectonics is generally recognized as the sur-
face expression of thermal convection in the

w xmantle–lithosphere system 1 . However, one of the
most important yet elusive goals of geodynamics and
tectonophysics is the self-consistent unification of
the physical theories of plate tectonics and mantle
convection. Efforts toward unification have generally
been taken with two different approaches. The first
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approach examines plate–mantle coupling; the sec-
ond approach treats the plate generation problem
itself. Plate–mantle coupling studies examine how
mantle flow interacts with over-riding plates that

w xhave a given geometry 2–6 or with a lithosphere
w xthat has prescribed weak zones 7,8 . Plate genera-

tion studies investigate how the plates and plate
Žmargins themselves are naturally generated i.e., as

.self-organizing structures from the nonlinear dy-
w xnamics of the mantle–lithosphere system 9–14 .

One of the primary features of plate tectonics not
readily generated by basic convective theory is
toroidal or strike-slip motion. Toroidal motion ac-
counts for a major portion of the Earth’s surface
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w xdeformation 2,15–18 but is, in fact, essentially
nonconvective. That is, it involves only horizontal
flow and is thus not directly driven by buoyancy
forces and does not transport heat or mass out of the
Earth’s interior. Without toroidal flow, motion at the
Earth’s surface would be entirely unplate-like; that
is, it would appear like the top of a simple convect-
ing fluid, with only convergent and divergent fea-
tures, no strike-slip margins and broadly distributed
deformation. In short, toroidal motion is an integral
feature of the plate-like behavior of the Earth’s
surface and thus knowledge of how toroidal motion
is excited in the mantle–lithosphere system is key to

Žunderstanding how plates are generated. It is impor-
tant to note that toroidal motion cannot be explained
as being caused by the plates; this is a tautology
equivalent to claiming that plate-like motion is due

.to the existence of plates .

1.2. Dynamic self-lubrication

The most fundamental clue as to the origin of
toroidal flow is that, in highly viscous media such as
the mantle, toroidal motion can only arise through

Žthe coupling of basic convective flow called poloidal
motion, which involves upwellings, downwellings

.and divergentrconvergent motion at the surface
w xwith a spatially variable viscosity 9,12,13,19,20 .

ŽTo a large extent, the fluid model of the mantle–
lithosphere system is the simplest possible paradigm
for describing irrecoverable deformation; this model
only crudely represents nonfluid behavior at plate
margins, such as brittle failure, through spatial and

.temporal averaging . The standard silicate viscosity
is indeed variable by virtue of temperature, pressure
and stress dependence. However, this rheology ap-
pears to permit very little toroidal motion in basic

Ž .Boussinesq nearly incompressible convection
w x w x19,21 . It has already been shown 12,13 that, in
simple models of lithosphere–mantle flow, plate-like
toroidal motion is best obtained with a self-lubricat-

Žing stick–slip rheology wherein both the fluid vis-
cosity and the very resistance to flow itself decrease

.with increasing deformation rate . Although the
stick–slip rheology is purely hypothetical, it is based
on the feedback between frictional heating and ther-

Žmoviscous behavior i.e., temperature-dependent vis-

. w xcosity 22 . The essence of such a feedback mecha-
nism is that as the medium is deformed more rapidly
it becomes hotter and weaker, and thus more readily

w xdeformed 23 . The stick–slip rheology itself approx-
imates this feedback mechanism through a stress–
strain-rate constitutive law but, in so doing, assumes

Ž .all processes are one-dimensional 1-D and steady
state; that is, 1-D conductive heat loss instanta-

w xneously removes frictional heating 22 . We therefore
refer to the stick–slip rheology as simple self-lubri-
cation. When heat transport is rigorously accounted
for, with three-dimensionality, nonlinear advection
and time dependence, the feedback mechanism has
even greater potential for generating rich, complex
behavior; in this case we refer to the feedback
mechanism as dynamic self-lubrication.

As with simple self-lubrication, the more physi-
cally rigorous and self-consistent dynamic self-lubri-
cation is likely to play an important role in the
generation of plate-like toroidal motion. Dynamic
self-lubrication in non-Boussinesq convection has
been found to lead to a variety of important phenom-

w xena 24–27 and, in particular, as shown by Bal-
w xachandar et al. 28 , to enhance the generation of

toroidal motion in three-dimensional flows. Indeed,
w xBercovici 14 proposed that the purpose of the

seemingly superfluous toroidal motion is closely tied
to the generation of viscous dissipation, a key ingre-
dient of dynamic self-lubrication. These various stud-
ies all suggest that the extremely fundamental pro-

Žcess of dynamic self-lubrication i.e., the feedback
between viscous heating and thermoviscous behav-

.ior , plays an important role in the generation of
plate-like flows.

In this paper, we demonstrate that a simple model
of mantle–lithosphere flow with dynamic self-lubri-
cation leads to more plate tectonic-like toroidal mo-
tion than in any other fluid dynamical model to date.

Ž .In this model, convective poloidal motion is pre-
scribed by driving lithospheric surface flow with

Žsources and sinks analogous to ridges and subduc-
.tion zones, respectively ; toroidal motion arises from

the interaction between this poloidal flow and dy-
namic self-lubrication. We are most concerned with
the fundamental structure and origin of strike-slip
plate margins, and not the overall plate geometries
themselves; thus a very simple source–sink geome-
try is used to focus on the basic physics.
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2. Theory

We drive purely two-dimensional horizontal flow
in a thin, incompressible viscous layer with a simple

w xsource–sink field 12,13 . The fluid motion generates
viscous heating which leads to temperature anoma-
lies and thus a laterally heterogeneous viscosity field
Ž .since the fluid viscosity is temperature dependent .
The coupling between viscosity gradients and the
divergentrconvergent flow provides a source for

Ž .toroidal strike-slip motion. Here we briefly present
the essential dimensionless equations of the theory

w xand defer to Bercovici 12,13 and the Appendices
for a more complete discussion.

Horizontal two-dimensional flow in cartesian co-
ordinates is represented by the horizontal velocity
vector:

v s= fq= = c z 1Ž . Ž .ˆh h h

where = is the horizontal gradient, f is the poloidalh

scalar potential, c is the toroidal stream function,
and z is the unit vector in the vertical direction. Theˆ
source–sink field is simply a prescribed horizontal
divergence which yields an equation for f:

Pe
2= Pv s= fs S x , y 2Ž . Ž .h h h

d

where Pe is the Peclet number, which here deter-
Žmines the velocity of the source–sink flow see

.Appendix B and Appendix E , d is the half-width of
Ž .either the source or sink see Appendix B , and

Ž .S x, y is a function which defines the shape of the
Žsource–sink field see Appendix B and the top frame

.of Fig. 1 . The stream function, c, is found through
the equation of motion for shallow-layer creeping

w xflow with variable viscosity; as shown in 12 this
leads to:

E 2m E 2c
4 2 ) )m= cq2= mP= = cqD mD cq4h h h h

E xE y E xE y

E 2m E 2m
2 ) )szP= m== = fq2 D m y2 D fˆ h h h

E xE y E xE y

3Ž .

where m is the temperature-dependent viscosity and
) Ž 2 . Ž 2 . Ž 2 . Ž 2 .D s E r Ex y E r E y . For the sake of sim-

plicity, and to display the minimum possible level of

nonlinearity and complexity in the fluid system, we
use a linear dependence of viscosity on temperature
Ž .see Appendix C :

m Q s1ynQ 4Ž . Ž .
where n controls the degree of temperature depen-

Ž .dence see Appendix E and Q is the temperature
anomaly. The evolution of Q is governed by a

Žsimple transport law with viscous dissipation see
.Appendix D :

EQ
2 2qv P= QsyQq= Qqm Q e 5Ž . Ž .˙h h h

E t
2 Ž w xwhere e is the second strain-rate invariant see 12˙

.and Appendix D .
Note that Q is the temperature anomaly above the

background temperature field of the model litho-
sphere; it therefore does not represent the total tem-

Ž .perature one might observe see Appendix D . More-
over, the temperature anomalies are very small in
magnitude when the fluid viscosity is highly temper-
ature dependent. This result is found a posteriori in
the numerical experiments, but can also be seen by a

Ž .simple scaling analysis of Eq. 5 . Such an analysis
shows that:

e2˙max
Q ; 6Ž .max 21rtqn ėmax

where the subscript max indicates maximum value
and t is the harmonic average of the dimensionless
secular, advective and diffusive time scales for heat
transport. Thus, a very large n will induce a very
small Q .max

The governing equations for our system are Eq.
Ž . Ž . Ž . Ž .2 , Eq. 3 , Eq. 4 and Eq. 5 . These are solved by
a basic spectral-transform method; see Appendix F

w xand 12,13,28 .

3. Numerical experiments

The behavior described by this simple model is in
fact quite dynamic and variable, displaying bifurca-
tions of steady states, and time-dependent solutions.
Here, we only report selected steady solutions which

Žshow the onset of plate-like i.e., intense and fo-
.cused toroidal motion. Moreover, we use a source–
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sink field that, if perfect strike-slip margins formed,
w xwould yield a simple square plate 29 . Plate-like

motion in this simple model is indicated by the
following:
1. A toroidal-to-poloidal kinetic energy ratio:

H = cP= c dxdyA h h
KE rKE s 7Ž .T P H = fP= f dxdyA h h

Žwhere A is the area of the two-dimensional
.domain that is of order unity, as with idealized

w xsquare plates 29 and the Earth’s present-day
w xplate motions 2,16 ;

2. A rectangular field of parallel, equal-length veloc-
ity vectors, which represents nearly solid body
motion of material from the source to the sink;

3. Narrow, intense bands of vertical vorticity:

v szP= =v sy= 2c 8Ž .ˆz h h h

where v is equivalent to the rate of strike-slipz

shear, thus its organization into narrow bands
indicates the formation of thin strike-slip margins.

4. A uniform viscosity pseudo-plate surrounded by a
contiguous lower viscosity margin. In the present
model, this condition is equivalent to a relatively
cool pseudo-plate surrounded by a contiguous,

Žuniformly ‘hot’ margin i.e., of higher tempera-
.ture than the background thermal state .

The ranges of values for Pe and n relevant for the
Earth are approximately 1FPeF100 and 10FnF

7 Ž .10 see Appendix G . Here, we use Pes1 and
Žds2 i.e., a source and sink each with a width that

is 2r3 to 1r2 of the fluid layer thickness; see
.Appendix E and determine the effect of making the

Žviscosity increasingly temperature dependent i.e.,
.increasing n on the toroidal motion. For a given Pe,

Fig. 2. Toroidal–poloidal kinetic energy ratio KE rKE andT P
² 2:integrated viscous dissipation me versus viscosity variability n˙

for flows driven by the source–sink field of Fig. 1. The bifurca-
tion or transition points are indicated by circles. Bifurcation from
the unplate-like branch to the plate-like one occurs at the right

Ž .circle in each plot; the reverse bifurcation with hysteresis occurs
at the left circle.

the poloidal field f remains unchanged, regardless
of n.

For ns0, toroidal motion does not exist, since
viscosity would be constant; toroidal flow is in fact

Ž .still very weak at ns1 Fig. 1 . Toroidal motion
Žand energy steadily grow with increasing n Fig. 1

.and Fig. 2 , yet the toroidal energy appears to satu-
Ž .rate i.e., approaches an asymptotic value as n™

1010. For the solutions with nF1010 the toroidal

Ž . Ž .Fig. 1. Flow and temperature fields for selected steady state solutions discussed in the text. The source–sink field Perd S x, y which
Ž . Ž . Ždrives the flow is shown in the top frame. Horizontal velocity v left column , vertical vorticity or rate of strike-slip shear v middleh z

. Ž . Ž .column , and temperature Q right column are shown for three values of the viscosity variability indicated at the far left , i.e., one low
value of n, and two values of n on either side of the transition or bifurcation from the unplate-like solutions to plate-like ones. The

Ž 3.minimum and maximum dimensionless values multiplied by 10 of each scalar field are shown on the color scales which are stretched to
emphasize nonzero values. Note that positive vorticity represents counter-clockwise rotation or left-lateral strike-slip shear; negative
vorticity is right-lateral strike-slip shear. The maximum velocity vector length represents a dimensionless speed of 0.94, which is 94% of the

Ž .speed of the original idealized plate from which the source-sink field was derived see Appendix E . Although the calculation domain was
Ž .y100Fx, yF100, only the domain within y60Fx, yF60 is shown given that the remaining domain contains little or no activity . See

also Appendix F for discussion of the numerical solutions.
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energy is significant, but the actual toroidal fields are
relatively diffuse and unplate-like. Moreover, the
temperature anomalies Q are most concentrated over
the source and sink, and more diffuse over the

Ž .strike-slip zones Fig. 1 .
At nf1020, a bifurcation occurs to a different

Ž .branch of solutions Fig. 2 which persists to higher
n. The high and low n branches display hysteresis
Ž .i.e., they overlap for a finite range of n which is
characteristic of cubicly nonlinear systems, such as
our model equations. Most importantly, the bifurca-
tion at ns1020 marks a dramatic change in the
structure of the toroidal and temperature fields. At
this transition, the toroidal kinetic energy jumps by
almost 50%, and the velocity field becomes much

Žmore plate-like i.e., it becomes a rectangular patch
.of parallel vectors . The temperature anomalies are

Ž .as highly if not more concentrated around the
strike-slip margins as around the source and sink;
this yields the desired plate-like viscosity distribution
Ži.e., a uniform, high viscosity plate interior, and

.narrow, contiguous, lower viscosity margins .
By far the most remarkable features of the transi-

Ž .tion at ns1020 are: 1 the vorticity or strike-slip
shear becomes focused into extremely narrow bands;

Ž .and 2 the maximum vorticity appears to increase
by more than 1000%. The regions of concentrated
vorticity for the solution with ns1020, indeed, have

Žmany of the properties of singularities see Appendix
.F . Although the actual numerical values of the

maximum vorticity must, therefore, be interpreted
Ž .with caution Appendix F , such behavior also sug-

gests that the numerical model is attempting to gen-
erate discontinuous plate motion. In essence, the
transition at ns1020 marks the formation of a
strike-slip fault in a fluid dynamical system.

4. Discussion and conclusions

In this paper we have used a very simple model to
demonstrate that plate-like toroidal motion can be

Ž .generated from convective-type poloidal flow using
only basic first principles fluid mechanics and ther-
modynamics. In particular, dynamic self-lubrication
Ži.e., the feedback between viscous heating and the

.temperature dependence of viscosity is shown to
yield a virtual transform fault in a fluid. However,

this pseudo-fault occurs only after a bifurcation or
transition to a state with fairly high viscosity con-
trasts between cold and hot fluid. These viscosity
contrasts are on the order of 1000, which are well
within reason for Earth-like conditions.

The cause for the transition to plate-like motion
probably lies in the basic thermodynamics of the
overall system. In particular, the surface integrated

² 2:viscous heating me not only decreases as the˙
toroidal energy rises, but it drops by a considerable
fraction across the transition to the highly plate-like

Ž .state Fig. 2 . The jump to plate-like motion there-
fore appears to occur to lessen the net dissipation of
the mechanical work that is done by the convective
flow in moving material from the source to the sink
Ž w xsee 14 for more discussion about the reduction of

.viscous heating by plate-like toroidal flow .
Although the relatively cold temperatures of the

Ž .Earth’s surface especially the sea floor and high
lithospheric viscosities are likely to put the Earth on

Žthe high n, plate-like side of the transition see
.Appendix G , the hotter temperatures and thus lower

lithospheric viscosities of planets such as Venus or
the ancient Earth might place these bodies on the
low n, unplate-like side of the transition. Although
these inferences are based on a very simple model,
the theory presented here may provide some insight
into some of the differences between the tectonic
states of the present-day Earth and Venus or the
ancient Earth.

Finally, given the suggested importance of dy-
namic self-lubrication and viscous heating for gener-
ating plate-like toroidal motion, it is worth address-
ing the observability of viscous heating at plate
margins. Viscous dissipation is typically discounted
as a negligible effect, mostly because there is no
significant heat flow anomaly at transform faults
where viscous heating would conceivably be greatest
w x30 . However, in the dynamic self-lubrication mech-
anism, viscosity m necessarily decreases as deforma-
tion rate e2 increases, and these competing effects˙
counteract each other’s contribution to viscous heat-
ing. This balance in fact causes the maximum dissi-

Ž 2 .pation max me and thus the maximum tempera-˙
ture anomaly Q to reach asymptotic limits ofmax
Ž .y1 y1 2tn and n , respectively, as e becomes suf-˙max

Ž Ž ..ficiently large see Eq. 6 . For fluids with strongly
Ž .temperature dependent viscosity large n the asymp-
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totic limits on temperature and heat production are
therefore very small. This can be understood physi-
cally by considering that, for a given strain rate, as
viscous heating generates a thermal anomaly in an
initially isothermal system, the viscosity over the
deforming zone will decrease rapidly, causing the
viscous heating to decrease as well. For large n the
maximum temperature will only reach a very small
value before the viscosity is so reduced that the
subsequently diminished viscous heating can be bal-
anced by thermal diffusion and other transport phe-
nomenon. Thus, for large strain rates and strongly
temperature-dependent viscosity, viscous heating and
associated temperature anomalies are very small in

Ž .magnitude see also Fig. 1 and Appendix G . There-
fore, the temperature and heat flow anomalies due
solely to viscous dissipation would be undetectable
in the background of lithospheric and mantle heat

Ž .flow Appendix G , in agreement with the observa-
tion that heat flow at transform faults is negligible
w x30 .

Although our model is quite simple and idealized,
it demonstrates that a virtual strike-slip fault with
negligible heat flow can be generated in a fluid
dynamical system. Though more realistic models are
clearly warranted, the work presented here suggests
that dynamic self-lubrication may be a fundamental
ingredient for the generation of plate tectonics from
mantle convection.
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Appendix A. Modeling considerations

Ž .As shown in Eq. 1 , fluid velocity is separated
into poloidal and toroidal parts. Poloidal flow is
driven by a source–sink field and, as shown in Eq.
Ž .3 , toroidal flow is driven by the coupling of poloidal
motion to viscosity gradients. Nonzero viscosity gra-
dients are caused by the viscosity’s dependence on

temperature, and temperature anomalies are gener-
ated by viscous heating.

In the following appendices we first present the
dimensional equations for the source–sink field and

Ž .resulting poloidal field Appendix B , the tempera-
Ž .ture-dependent viscosity Appendix C , and the evo-

Ž .lution of the temperature field Appendix D ; nondi-
mensionalization of these equations is discussed in
Appendix E. The equation governing the toroidal

w xflow field has been discussed elsewhere 12 ; in fact,
Ž .Eq. 3 always appears the same, regardless of

whether it is dimensional or nondimensional. We
then outline the numerical methods used for solving
the governing equations and discuss the quality and

Ž .limitations of the numerical solutions Appendix F .
Finally, in Appendix G we evaluate the nondimen-
sional control parameters for Earth-like conditions
and discuss the associated value of the nondimen-

Žsionalizing temperature scale which determines the
dimensional values of the thermal anomalies and

.resulting heat flow anomalies .

Appendix B. The source–sink field and poloidal
flow

We derive a dimensional source–sink function
from the motion of a square plate with sides of

Žlength 2a and margins of finite width 2d both
.presently with dimensional units . We employ an

Ž X X.arbitrary coordinate system, denoted by x , y , and
prescribe the plate to move at a dimensional speed V
in the yX direction. Defining the coordinate origin at
the plate’s center, the velocity field of the plate as a

X X Ž X. Ž X. Xfunction of x and y is thus Vs x s y y where:ˆ

zqa zya
tanh y tanhž / ž /d d

s z s 9Ž . Ž .
2tanh ardŽ .

The source–sink function is simply the horizontal
divergence of the plate’s velocity; thus the horizontal
divergence of the dimensional fluid velocity v is:h

= Pv s= 2fs= P Vs xX s yX yXŽ . Ž .Ž .ˆh h h h

V
X Xs s x f y 10Ž . Ž . Ž .

d
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where:

zqa zya
2 2sech ysechž / ž /d d

f z s 11Ž . Ž .
2tanh ardŽ .

Ž .Eq. 10 therefore provides a governing equation
w xfor the dimensional poloidal potential f. As in 12 ,

the xX yyX axes are rotated clockwise 458 relative to
the xyy frame of the numerical computations; that

X X 'Ž . Ž .is, x , y s xyy, xqy 2 . The rotation of the
plate and hence the source–sink field is done to
avoid roll-like flows caused by the periodic bound-

Žaries employed in the spectral-transform method see
.Appendix F . Finally, we note that this source–sink

field is chosen because it is derived from motion of a
simple plate; we may thus determine if the applica-
tion of our nonlinear theory can recover, in some
form, the original plate.

Appendix C. Rheology

Our dimensional viscosity has the simplest possi-
ble temperature dependence:

m T sm 1yb T 12Ž . Ž . Ž .o

where m is the viscosity when the temperatureo

anomaly is zero, and b governs the temperature
dependence of the viscosity and has units of Ky1.
With this rheology, we assume that temperature

Ž .anomalies are relatively small see Appendix G and
thus we linearize the Arrhenius law for silicate rheol-
ogy.

Appendix D. The temperature equation

The dimensional temperature field, averaged
across the thickness of the fluid layer, is governed by
a simple advection–diffusion equation forced by vis-
cous heating:

E T Ck 2m
2 2qv P= Tsy Tqk= Tq e 13Ž .˙h h h2E t rcH p

where T is the temperature anomaly due to viscous
heating; k is thermal diffusivity; H is the thickness

of the fluid layer; r is fluid density; c is heatp

capacity; C is a nondimensional constant, and

22 2E f E c 22 2e s2 q q = f˙ Ž .h2ž /E xE yE x

2 2E f E c
2y= f qh 2ž /E xE yE x

221 E f
)q 2 yD c 14Ž .ž /2 E xE y

w xis the second strain-rate invariant 12 . The first term
Ž .on the right of Eq. 13 accounts for diffusive loss

through the bottom andror top of the fluid layer; for
example, if we assume that T is the vertically aver-
aged temperature anomaly and that the actual profile

Žis nearly parabolic or sinusoidal to match conditions
.that T vanishes at the top and bottom of the layer ,

Ž .then C would be O 10 . The last term represents
viscous dissipation. The above equation also implic-

Ž .itly accounts for the loss or influx of heat due to
Ž .the ejection injection of viscously heated fluid out

Ž . Ž .of in to the sink source region. It is important to
note that T is the temperature anomaly above the
background lithospheric temperature field, which we
assume varies on a much broader spatial scale than
does T itself. This assumption is only strictly valid
far away from ridges and subduction zones, but is
sufficiently acceptable given the simplicity of our
model. Moreover, because the only source of heat

Ž .for T is viscous dissipation, both the source ridge
Ž .and sink subduction zone will appear ‘hot’, counter

to our intuition that subduction zones are ‘cold’. We,
in fact, find, a posteriori, that the temperature
anomalies for strongly variable viscosity are quite

Ž Ž . .small see also Eq. 6 and Appendix G and are thus
unlikely to change significantly the background

Žlithospheric temperature field thus subduction zones
would continue to appear ‘cold’ even with viscous

.heating, as expected .

Appendix E. Nondimensionalization

'We nondimensionalize x, y, a and d by Hr C
2'Ž . Ž . Ž .and thus = by C rH , time t by H r Ck , fh
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'Ž . Ž .and c both by k , v by C k r H , and viscosityh

m by m . We also define a dimensionless tempera-o

ture such that:

2Cm ko
Ts Q 15Ž .2rc Hp

Ž . Ž . Ž .The dimensional Eq. 10 , Eq. 12 and Eq. 13
Ž . Ž .become the dimensionless governing Eq. 2 , Eq. 4

Ž .and Eq. 5 , respectively, with control parameters:

2Cm kb VHo
ns and Pes 16Ž .2 'rc H Ckp

ŽNote that this Peclet number is much smaller
than what is typically used for mantle flow since it is
based on lithospheric thickness instead of mantle

. Ž . Žthickness . Eq. 3 , governing toroidal motion see
w x.12 , applies to both the dimensional and nondimen-
sional formulations. In all calculations shown we use
Pes1 and, for the source–sink field, as25 and
ds2. Note that the dimensionless velocity of the
original plate is Pes1; this velocity can be com-
pared to the fluid velocity generated in our theoreti-

Ž .cal model Fig. 1 .

Appendix F. Numerical methods and solutions

The differential equations are solved by a spec-
tral-transform technique. The nonlinear products in
each equation are calculated on an xyy grid, and
these products are Fourier transformed to a spectral
or wave-number domain. These transformed nonlin-
ear terms are then used as forcing functions for the
fourier-transformed linear parts of the relevant equa-
tions. Time integration is performed by basic finite
differencing. The calculation domain is y100Fx, y

w x w xF100. See 28 and 12 for examples.
The steady numerical solutions presented in this

paper are all for Pes1 and a wide range of n. The
branches of steady solutions represented in Fig. 2
were all found by using the steady solution at a
particular n as an initial condition for a solution at a
neighboring value of n. In this way we marched up
or down in n to map out the steady solutions. The
bifurcation at ns1020 occurred while marching
upward on the low n branch; the reverse bifurcation
at ns800 was obtained while marching down on
the high n branch.The solutions on the low n un-

plate-like branch were obtained on a 512=512 grid;
convergence tests indicate that the solutions shown
do not change at all for grids with resolution finer
than on a 256=256 grid. The solutions on the high
n plate-like branch were done with grids up to
1024=1024 resolution. The values of the kinetic
energy ratio and net viscous dissipation shown in
Fig. 2 were obtained from solutions on a 512=512
grid. The solution for ns1020 shown in Fig. 1 was
obtained on a 1024=1024 grid. Convergence tests
for the plate-like solutions show that global quanti-

Žties such as average kinetic and thermal energy, and
.net viscous heating , and the temperature and veloc-

ity fields do not change significantly for grids finer
than a 384=384 grid. The contiguous and highly
focused structure of the vorticity concentrations also
remains qualitatively robust and unchanged for grids
finer than a 256=256 grid. However, the vorticity
concentrations for the plate-like solutions behave
remarkably like singularities in that the maximum
value of the vorticity does not converge, even up to
1024=1024 grids. As one might expect from a
singularity, the maximum vorticity scales almost ex-
actly with an increase in the resolution; for example,
as the grid resolution is moved from 512=512 to
1024=1024 the maximum vorticity almost exactly
doubles. Therefore, although it is very intriguing that
the fluid dynamical system appears to be generating

Žsingularities in the vorticity field which one desires
.in order to obtain ideal plate-like motion , the maxi-

mum values of vorticity for the ns1020 solution
Ž .Fig. 1 must be interpreted with caution.

Appendix G. Nondimensional parameter values
and the temperature scale

ŽEarth-like ranges for Pe and n i.e., 1FPeF100
7.and 10FnF10 are estimated using Cf10, ks

10y6 m2rs, r s 3000 kgrm3, and c s 1000p

JrkgrK. For more poorly constrained dimensional
quantities we use 10 kmFHF100 km for litho-
spheric thickness and 1 cmryrFVF10 cmryr for
plate velocity. There are few bounds on ambient
lithospheric viscosity; thus to be safe we use 1024 Pa
sFm F1027 Pa s, which contains empirical esti-o

mates of 1025 Pa s, based on sedimentary basin
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w x Ž .subsidence 31,32 . Estimates of b from Eq. 12 are
derived using the simple silicate rheological law:

aT 1m
y1ž /T 1qTrTo omsm e 17Ž .o

where T is the melting temperature, for which wem

use a typical surficial value of 2000 K; moreover,
af30, and the lithospheric background temperature

Ž w x.is in the range of 300 KFT F1000 K see 33 . Ifo
Ž . 2T<T , then mfm 1ybT where bsaT rT ;o o m o

thus the values of b lie in the range 0.06 Ky1 FbF
y1 Ž .0.7 K .The temperature scale from Eq. 15 is in

fact simply nrb. For the largest n used, the temper-
ature scale lies between 1000 K and 20,000 K.
However, the maximum nondimensional temperature

y3 Ž .anomaly Q is approximately 10 see Fig. 1 ,max
Žthus the dimensional thermal anomaly is small i.e.,

. Žbetween 1 K and 20 K . These small thermal
anomalies can generate large viscosity contrasts be-
cause, at the relatively cold temperatures of the
lithosphere, viscosity is much more sensitive to
changes in temperature than it would be in the

Ž ..deeper mantle; see Eq. 17 . The resulting maxi-
mum heat flow anomaly is thus approximately

Ž . Žrc knQ r bH which given the ranges in H andp max
. 2nrb lies between 0.03 and 6 mWrm , that is,

20–3000 times smaller than the background seafloor
2 w xheat flow of approximately 100 mWrm 33 .

References

w x1 D. Forsyth and S. Uyeda, On the relative importance of the
driving forces of plate motion, Geophys. J. R. Astron. Soc.
43, 163–200, 1975.

w x2 B.H. Hager and R.J. O’Connell, Subduction zone dip angles
and flow driven by plate motion, Tectonophysics 50, 111–
133, 1978.

w x3 B.H. Hager and R.J. O’Connell, Kinematic models of large-
scale flow in the Earth’s mantle, J. Geophys. Res. 84,
1031–1048, 1979.

w x4 B.H. Hager and R.J. O’Connell, A simple global model of
plate dynamics and mantle convection, J. Geophys. Res. 86,
4843–4867, 1981.

w x5 L. Cserepes and U. Christensen, Three-dimensional convec-
tion under drifting plates, Geophys. Res. Lett. 17, 1497–1500,
1990.

w x6 C.W. Gable, R.J. O’Connell and B.J. Travis, Convection in
three dimensions with surface plates: Generation of toroidal
flow, J. Geophys. Res. 96, 8391–8405, 1991.

w x7 S. Zhong and M. Gurnis, Mantle convection with plates and
mobile, faulted plate margins, Science 267, 838–843, 1995.

w x8 S. Zhong and M. Gurnis, Towards a realistic simulation of
plate margins in mantle convection, Geophys. Res. Lett. 22,
981–984, 1995.

w x9 N.M. Ribe, The dynamics of thin shells with variable viscos-
ity and the origin of toroidal flow in the mantle, Geophys. J.
Int. 110, 537–552, 1992.

w x10 S. Weinstein and P. Olson, Thermal convection with non-
Newtonian plates, Pure Appl. Geophys. 146, 1996.

w x11 S. Weinstein, Thermal convection in a cylindrical annulus
with a non-Newtonian outer surface, Proc. IUTAM Symp. on
Mechanical Problems in Geodynamics, Beijing, China, Pure
Appl. Geophys., in press.

w x12 D. Bercovici, A simple model of plate generation from
mantle flow, Geophys. J. Int. 114, 635–650, 1993.

w x13 D. Bercovici, A source–sink model of the generation of plate
tectonics from non-Newtonian mantle flow, J. Geophys. Res.
100, 2013–2030, 1995.

w x14 D. Bercovici, On the purpose of toroidal flow in a convecting
mantle, Geophys. Res. Lett. 22, 3107–3110, 1995.

w x15 A.M. Forte and W.R. Peltier, Plate tectonics and aspherical
earth structure: The importance of poloidal–toroidal cou-
pling, J. Geophys. Res. 92, 3645–3679, 1987.

w x16 R.J. O’Connell, C.W. Gable and B.H. Hager, Toroidal–
poloidal partitioning of lithospheric plate motion, in: Glacial
Isostasy, Sea Level and Mantle Rheology, R. Sabadini et al.,
eds., pp. 535–551, Kluwer Academic, Norwell, Mass., 1991.

w x17 O. Cadek and Y. Ricard, Toroidalrpoloidal energy partition-
ing and global lithospheric rotation during Cenozoic time,
Earth Planet. Sci. Lett. 109, 621–632, 1992.

w x18 C. Lithgow-Bertelloni, M.A. Richards, Y. Ricard, R.J.
O’Connell and D.C. Engebretson, Toroidal–poloidal parti-
tioning of plate motions since 120 Ma, Geophys. Res. Lett.
20, 375–378, 1993.

w x19 U. Christensen and H. Harder, Three-dimensional convection
with variable viscosity, Geophys. J. Int. 104, 213–226, 1991.

w x20 O. Cadek, Y. Ricard, Z. Martinec and C. Matyska, Compari-
son between Newtonian and non-Newtonian flow driven by
internal loads, Geophys. J. Int. 112, 103–114, 1993.

w x21 M. Ogawa, G. Schubert and A. Zebib, Numerical simulations
of three-dimensional thermal convection in a fluid with
strongly temperature-dependent viscosity, J. Fluid Mech. 233,
299–328, 1991.

w x22 J.A. Whitehead and R.F. Gans, A new, theoretically tractable
earthquake model, Geophys. J. R. Astron. Soc. 39, 11–28,
1974.

w x23 G. Schubert and D.L. Turcotte, One-dimensional model of
shallow mantle convection, J. Geophys. Res. 77, 945–951,
1972.

w x24 S. Balachandar, D.A. Yuen, D.M. Reuteler and G.S. Lauer,
Viscous dissipation in 3-dimensional convection with tem-
perature-dependent viscosity, Science 267, 1150–1153, 1995.

w x25 P.J. Tackley, Effects of strongly variable viscosity on three-
dimensional compressible convection in planetary mantles, J.
Geophys. Res. 101, 3311–3332, 1996.



( )D. BercoÕicirEarth and Planetary Science Letters 144 1996 41–51 51

w x26 T.B. Larsen, D.A. Yuen and A.V. Malevsky, Dynamical
consequences on fast subducting slabs from a self-regulating
mechanism due to viscous heating in variable viscosity con-
vection, Geophys. Res. Lett. 22, 1277–1280, 1995.

w x27 T.B. Larsen, D.A. Yuen, J.L. Smedso and A.V. Malevsky,
Thermomechanical modeling of pulsation tectonics and con-
sequences on lithospheric dynamics, Geophys. Res. Lett. 23,
217–220, 1996.

w x28 S. Balachandar, D.A. Yuen and D.M. Reuteler, Localization
of toroidal motion and shear heating in 3-D high Rayleigh
number convection with temperature-dependent viscosity,
Geophys. Res. Lett. 22, 477–480, 1995.

w x29 P. Olson and D. Bercovici, On the equipartitioning of kinetic
energy in plate tectonics, Geophys. Res. Lett. 18, 1751–1754,
1991.

w x30 A.H. Lachenbruch and J.H. Sass, Heat flow and energetics of
the San Andreas fault zone, USGS Open File Rep. 80-625,
pp. 47–146, 1980.

w x31 C. Beaumont, The evolution of sedimentary basins on a
viscoelastic lithosphere, Geophys. J. R. Astron. Soc. 55,
471–497, 1976.

w x32 A.B. Watts, G.D. Karner and M.S. Steckler, Lithospheric
flexure and the evolution of sedimentary basins, Philos.
Trans. R. Soc. London Ser. A 305, 249–281, 1982.

w x33 D.L. Turcotte and G. Schubert, Geodynamics: Applications
of Continuum Physics to Geological Problems, Wiley, New
York, 1982.


