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Abstract

Iron (III) oxides are ubiquitous in near-surface soils and sediments and interact strongly with dissolved phosphates via

sorption, co-precipitation, mineral transformation and redox-cycling reactions. Iron oxide phases are thus, an important res-
ervoir for dissolved phosphate, and phosphate bound to iron oxides may reflect dissolved phosphate sources as well as carry a
history of the biogeochemical cycling of phosphorus (P). It has recently been demonstrated that dissolved inorganic phosphate
(DIP) in rivers, lakes, estuaries and the open ocean can be used to distinguish different P sources and biological reaction path-
ways in the ratio of 18O/16O (d18OP) in PO4

3�. Here we present results of experimental studies aimed at determining whether
non-biological interactions between dissolved inorganic phosphate and solid iron oxides involve fractionation of oxygen iso-
topes in PO4. Determination of such fractionations is critical to any interpretation of d18OP values of modern (e.g., hydro-
thermal iron oxide deposits, marine sediments, soils, groundwater systems) to ancient and extraterrestrial samples (e.g.,
BIF’s, Martian soils). Batch sorption experiments were performed using varied concentrations of synthetic ferrihydrite and
isotopically-labeled dissolved ortho-phosphate at temperatures ranging from 4 to 95 �C. Mineral transformations and mor-
phological changes were determined by X-Ray, Mössbauer spectroscopy and SEM image analyses.

Our results show that isotopic fractionation between sorbed and aqueous phosphate occurs during the early phase of sorp-
tion with isotopically-light phosphate (P16O4) preferentially incorporated into sorbed/solid phases. This fractionation showed
negligible temperature-dependence and gradually decreased as a result of O-isotope exchange between sorbed and aqueous-
phase phosphate, to become insignificant at greater than �100 h of reaction. In high-temperature experiments, this exchange
was very rapid resulting in negligible fractionation between sorbed and aqueous-phase phosphate at much shorter reaction
times. Mineral transformation resulted in initial preferential desorption/loss of light phosphate (P16O4) to solution. However,
the continual exchange between sorbed and aqueous PO4, concomitant with this mineralogical transformation resulted again
in negligible fractionation between aqueous and sorbed PO4 at long reaction times (>2000 h). This finding is consistent with
results obtained from natural marine samples. Therefore, 18O values of dissolved phosphate (DIP) in sea water may be pre-
served during its sorption to iron-oxide minerals such as hydrothermal plume particles, making marine iron oxides a potential
new proxy for dissolved phosphate in the oceans.
� 2009 Elsevier Ltd. All rights reserved.

1. INTRODUCTION

In sediments and soils under Earth surface conditions,
iron (Fe) occurs predominantly as Fe3+ in the form of spar-

ingly soluble Fe-oxide minerals such as ferrihydrite, goe-
thite, and hematite (Cornell and Schwertmann, 2003).
Phosphate interacts strongly with Fe-oxides (includes
hydroxides and oxyhydroxides) via to Fe-oxide surfaces
(Paige et al., 1997; Borch et al., 2007). Phosphate can also
co-precipitate with or become occluded within newly form-
ing and transformed Fe-oxide minerals and even influence
the type of Fe-oxide formed (e.g., lepidocrocite vs.
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maghemite) depending on the solution pH, temperature
and P/Fe ratio (Galvez et al., 1999; Torrent and Barron,
2000). The sorption of dissolved inorganic ortho-phosphate,
PO4, to Fe-oxide-rich sediments can reduce the concentra-
tion of bio-available P and buffer dissolved PO4 to
growth-limiting concentrations (Blake et al., 2001). For
example, Fe-oxides formed in association with hydrother-
mal vent fluids at mid-ocean ridge (MOR) systems are a
major sink in the global P cycle (Berner, 1973; Wheat
et al., 1996). Other forms of hydrothermal iron oxides that
scavenge phosphate include particulates in venting fluids,
crusts formed by weathering of iron-rich basalts and Fe-sul-
fides, and microbial mats formed by Fe-oxidizing bacteria
(FeOB) associated with low-temperature diffuse-flow vent-
ing (Wheat et al., 1996; Emerson and Moyer, 2002).

In aquatic systems, the 18O:16O ratio of dissolved ortho-
phosphate, (PO4)aq, has recently been shown to record the
effects of specific processes and reactions occurring during
the biogeochemical cycling of P, making phosphate oxygen
isotope compositions (i.e., d18Op values) a useful tool for
investigating P cycling pathways in aquatic systems includ-
ing rivers, lakes, estuaries and the open ocean (Markel
et al., 1994; Blake et al., 1997, 2005; Colman et al., 2005;
McLaughlin et al., 2006). In biologically-mediated reac-
tions, oxygen isotope exchange between (PO4)aq and H2O
is very rapid due to enzymatic catalysis (Luz and Kolodny,
1985; Blake et al., 1997, 2005; Paytan et al., 2002). Under
abiotic conditions and at most earth-surface temperatures
(<80 �C) and pressures, however, phosphate resists O-iso-
tope exchange with water (Tudge, 1960; Blake et al.,
1997, 1998; Lecuyer et al., 1999). Therefore, in fully abiotic
systems, O-isotope fractionation between aqueous and solid
phase phosphate should reflect the combined isotope effects
due to exchange between aqueous [(PO4)aq] and sorbed
[(PO4)srb] phosphate (e.g., Slomp et al. (1998) and refer-
ences therein) at temperatures <80 �C. Iron oxides from
low-temperature hydrothermal systems at the EPR and
Larson’s Seamounts have been shown to contain PO4 with
a strong biological signature, consistent with cellular turn-
over/metabolism of sorbed PO4 at the ambient vent temper-
ature (Blake et al., 2001). In environments such as the Loihi
Seamount where both abiogenic and biogenic iron oxides
may form side-by-side, the isotopic signature of sorbed or
co-precipitated phosphate may reflect different signatures
in different iron oxide microlayers.

Several (bio)geochemical processes and reaction net-
works associated with phosphorus cycling in aquatic envi-
ronments (Fig. 1 in Blake et al., 2005) affect both the
concentration and isotopic composition of phosphates. It
remains to be determined, however, if cycling of phos-
phate during both biotic and abiotic phosphate-iron oxide
interactions — a dominant process in marine sediments
and soils — involves fractionations of oxygen isotopes.
In fact, knowledge of factors affecting O-isotope exchange
rates and fractionation between sorbed and aqueous-phase
phosphates, if any, is essential to interpretation of both
aqueous and solids-phase phosphate O-isotope ratios mea-
sured in any natural system where iron oxides occur, such
as hydrothermal vents, soils, banded iron formations and
iron-rich soils/deposits on Mars. Characterization of this

important pathway in the biogeochemical cycling of phos-
phate (Fig. 1 in Blake et al., 2005) is also crucial to distin-
guishing d18Op signatures produced by biotic vs. abiotic
processes.

Research presented here is focused primarily on the
determination of the fractionations of oxygen isotopes in
phosphates during abiotic sorption/desorption to/from fer-
rihydrite under conditions relevant to ocean settings. Since
the transformation of ferrihydrite to other more stable min-
erals may affect partitioning of phosphate, we quantified
this transformation using Mössbauer spectroscopy. Our re-
sults show that the sorption/desorption process involves
initial kinetic fractionation of oxygen isotopes, however,
at long reaction times (>100 h at room temperature), isoto-
pic exchange between sorbed and aqueous-phase phos-
phates results in no measurable O-isotope fractionation
between these phases.

2. MATERIALS AND METHODS

2.1. Synthesis and purification of ferrihydrite

Ferrihydrite was synthesized from ferric nitrate using the
method of Cornell and Schwertmann (2003). Briefly, 1 M
KOH was slowly added to a solution of 0.1 M
Fe(NO3)3�9H2O while stirring, until the pH reached 7.5.
Once pH was stabilized, the ferrihydrite precipitate was
washed three times by centrifugation using deionized water.
The ferrihydrite was then dialyzed using deionized water for
10 days to remove electrolytes. To avoid any possible sub-
sequent changes in ferrihydrite properties, the dialyzed
samples were used immediately in experiments. One portion
of each sample was oven dried for density measurement and
another portion was freeze dried and used to characterize
mineralogical and textural properties using standard pow-
der XRD, Mössbauer spectroscopy and SEM image
analyses.

2.2. Phosphate sorption experiments

Phosphate sorption experiments were performed to
determine equilibrium distribution between aqueous and
solid phase phosphate as a function of ferrihydrite and
phosphate concentration. Three series of experiments were
carried out to determine the O-isotopic fractionation be-
tween solid and aqueous-phase phosphate (Table 1). The
first series of experiments was conducted with a ferrihydrite
concentration of 10 g/L and 78 mM of 18O-labeled phos-
phate (12.7& VSMOW) in a 1600 mL reaction volume at
four different temperatures (4, 21, 70 and 95 �C). The high
concentration of PO4 was required to maintain almost
equal distribution of PO4 in sorbed and aqueous phases,
as well as to allow extraction of several sample aliquots
to understand the mechanism of sorption/desorption and
associated isotopic fractionations. The second series of
experiments was performed to understand the effect of the
mass of ferrihydrite present [by using 0.5 g/L ferrrihydrite
and 2.5 mM 18O-labeled phosphate (33.9&)] in a 500 mL
reaction volume at two temperatures (21 and 70 �C). Both
sets of experiments were performed at pH 8.2 (±0.2) in
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an artificial sea water medium (Gao and Mucci, 2003) and
were stirred continuously using a magnetic stirrer. The pH
of all experiments was periodically measured and main-
tained at 8.2 (±0.2) using 1 mM NaOH. In each experi-
ment, 50 lmol/L sodium azide was added to suppress
microbial activities.

To better simulate natural oceanic environments, where
the aqueous phosphate concentration is �3–4 lmol/L
(Wheat et al., 1996; Colman et al., 2005), a third series of
experiments was performed in HDPE carboys using 0.1 g/L
of ferrihydrite and a 20 L reaction volume. The carboy con-
tainers were periodically shaken to homogenize the sample.
Other experimental parameters were held constant as
described above. The measured equilibrium phosphate dis-
tribution showed that aqueous-phase phosphate remained
at 3–13 lmol/L over the course of carboy experiments.

At selected time points, iron oxide-phosphate suspen-
sion was extracted from reaction vessels, and 1.5% Si was
added to limit iron-oxide mineral transformation, and
aqueous and sorbed-phase phosphates were separated by
centrifugation. The sorbed-phase phosphate with iron oxide
was freeze dried, fully homogenized and stored for further
analysis. A portion of the freeze dried mass was then ex-
tracted by dissolving iron oxide solids in 1 or 4 M HCl
(depending on the ageing and crystallinity of minerals) for
24 h. Concentrations of aqueous and sorbed phosphate
phases were measured colorimetrically using a UV/vis

Table 1
Summary of experimental set-up for FeO–PO4 interaction
experiment.

Experimental
temperature
(�C)

Total
PO4

(mmol/L)

Starting
d18O of
PO4 (&)

Ferrihydrite
concentration
(g/L)

Total
volume
(L)

4 78.0 12.7 10.0 0.8
21 78.0 12.7 10.0 1.6
21 3.1 33.9 0.5 0.5
21 1.0 13.8 0.1 16.0
70 78.0 12.7 10.0 1.6
70 3.1 33.9 0.5 0.5
95 78.0 12.7 10.0 1.6
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1.82e+6
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B) 95-21
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RT Spectra

(a)

(b)

(d)
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c)d) 5 µm

(e) 

(c) 

1 µm

Fig. 1. 12 K Mössbauer spectra of starting ferrihydrite (a) and transformed mineral/s at 95 �C (b). Room temperature Mössbauer spectra of
these two phases are shown in (d). SEM images of ferrihydrite (c) and transformed mineral/s (e) show growth of acicular crystals on very fine
grained ferrihydrite.
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spectrophotometer by the phosphomolybdate blue method
(Murphy and Riley, 1962).

2.3. Methods of aqueous and sorbed phosphate O-isotope

analysis

Aqueous and sorbed-phase phosphates were converted
to silver phosphate for O-isotope analysis. The MAGIC
(magnesium-induced phosphate co-precipitation) method
(Karl and Tien, 1992 as modified by Colman et al., 2005)
was used to reduce sample volume and concentrate phos-
phate in large-volume carboy experiments. Both aqueous
and sorbed-phase phosphate from all series of experiments
was purified using sequential precipitation and re-crystalli-
zation methods adapted from Luz and Kolodny (1985) and
modified by Blake et al. (1998) and Liang and Blake (2007).
In brief, dissolved phosphate was first precipitated as
ammonium phosphomolybdate (APM), then re-crystallized
as magnesium ammonium phosphate (MAP). MAP was
dissolved and the resulting solution treated by cation resin
exchange to remove Mg2+ and other cations. The purified
phosphate solution produced by this method was finally
converted to silver phosphate for O-isotopic analysis. A
separate phosphate standard was processed identically
and in parallel with samples to confirm the validity of sam-
ple processing and reliability of isotopic results.

Phosphate O-isotope analyses were carried out at the
Earth System Center for Stable Isotope Studies (ESCSIS)
of the Yale Institute for Biospheric Studies. Silver phos-
phate was analyzed by online high-temperature thermal
decomposition (Vennemann et al., 2002; Colman et al.,
2005) using a Thermo-Chemolysis Elemental Analyzer
(TC/EA, 1450 �C) coupled to a Delta +XL continuous flow
isotope ratio monitoring mass spectrometer (Thermo-Finn-
igan, Bremen, Germany) with precision of ±0.2–0.3&.
Phosphate O-isotope ratios (d18OP) were calibrated against
conventional fluorination using different silver phosphate
standards according to published methods (Vennemann
et al., 2002). All O-isotope data are reported relative to
the VSMOW standard in units of permil (&).

2.4. XRD

Both the synthesized ferrihydrite and minerals formed/
transformed during experiments were analyzed using
XRD. Powder XRD patterns were obtained with a Philips
PW3040/00 X’pert MPD system, using Cu Ka radiation
with a variable divergent slit and a solid-state detector.
The routine power was 700 W (35 kV, 20 mA). The pow-
dered samples were packed into the wells (6.35 mm diame-
ter and 0.8 mm deep) of low-background quartz XRD
slides. The JADE+, V5 (Materials Data Inc., Livermore,
California) software package was used for data analysis.

2.5. 57Fe-Mössbauer spectroscopy

Approximately 50 mg of the sample was placed into a
Cu sample holder that was sealed at one end with clear
scotch tape and half-filled with petroleum jelly. The holder
was then filled with petroleum jelly and sealed with scotch

tape. An aluminized Mylar stable to liquid He temperature
was used to seal each end of the holder. Both the tape and
polymer were snapped into the holder with rings made of
PEEK polymer for a tight fit. Mössbauer spectra were col-
lected using a 50 mCi (initial strength) 57Co/Rh source. The
velocity transducer MVT-1000 (WissEL) was operated in a
constant acceleration mode (23 Hz, ±12 mm/s). An Ar–Kr
proportional counter analyzed transmitted radiation, and
the counts were stored in a multichannel scalar (MCS) as
a function of energy (transducer velocity) using a 1024
channel analyzer. Data were folded to 512 channels to give
a flat background and a zero-velocity position correspond-
ing to the center shift (CS) of a metal iron foil at room
temperature (RT). Calibration spectra were obtained with
a 25 mm thick a-Fe(m) foil (Amersham, England) placed
in the same position as the samples to minimize sample
geometry errors. A closed-cycle cryostat (ARS, Allentown,
PA) was employed for below-RT measurements. The
Mössbauer data were modeled with the Recoil software
(University of Ottawa, Canada) using a Voight-based
structural fitting routine (Rancourt and Ping, 1991). The
coefficient of variation of the spectral areas of the individ-
ual sites generally ranged between 1% and 2% of the fitted
values.

3. RESULTS

3.1. Properties of ferrihydrite and its transformation products

XRD patterns and Mössbauer spectroscopy revealed
that the starting mineral was pure 2-line ferrihydrite and
SEM images showed uniform sized ferrihydrite nanoparti-
cles (Fig. 1). For all experiments performed at 670 �C with
identical starting materials, there were no detectable
changes in the mineralogy and morphology of ferrihydrite
over 1 year of reaction. In the 95 �C experiment, ferrihy-
drite began to transform and by �2000 h of reaction, acic-
ular crystals started to grow (Fig. 1b and d). With this
progressive change, ferrihydrite in the presence of phos-
phate changed into a new suite of minerals closely related
to iron phosphate hydrate, potassium–magnesium phos-
phate and winchite.

57Fe-Mössbauer spectroscopy is a sensitive 57Fe specific
(natural abundance of 2.12%) technique that provides
information on oxidation state, coordination environment
and magnetic properties of Fe-containing materials, irre-
spective of their crystallinity. Fig. 1 shows Mössbauer spec-
tra of 2-line ferrihydrite (the starting material) and its
transformation product at 95 �C obtained at room temper-
ature (RT) and 12-K, after 3-months. Spectra were ob-
tained at different temperatures to quantify contributions
of various species since temperature has a significant effect
on magnetic properties of Fe-oxides, particularly 2-line fer-
rihydrite (Murad and Cashion, 2004). The modeled param-
eters of the starting material at RT (doublet pattern due to
paramagnetic behavior – brown trace1, Fig. 1e) were iden-
tical to that of 2-line ferrihydrite (center shift [CS] = 0.36

1 For interpretation of color mentioned in this figure the reader is
referred to the web version of the article.
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mm/s and quadrupole shift [QS] = 0.62 mm/s). The RT
spectrum of the transformation product was not modeled
(the 12-K spectrum was modeled instead for better quanti-
fication; Fig. 1c) because the presence of two doublets in its
spectrum was evident from the asymmetry of the pattern
and the shoulders in its spectrum (green trace). This obser-
vation was consistent with XRD that showed peaks due to
both 2-line ferrihydrite and to an unidentified Fe-phase
(Fig. 1d). The broad sextet feature of 2-line ferrihydrite at
12-K (Fig. 1a) is consistent with its behavior at or below
77-K where the doublet feature transforms to a sextet due
to magnetic ordering. The 2-line ferrihydrite transforma-
tion product, on the other hand, is not magnetically or-
dered at 12-K (center shift [CS] = 0.48 mm/s and
quadrupole shift [QS] = 1.68 mm/s; 25% spectral area,
Fig. 1c). Mössbauer parameters of the product at RT are
not consistent with P-substituted ferrihydrite (Thibault
et al., 2009), while its 12-K parameters are also not consis-
tent with lepidocrocite (c-FeOOH) because lepidocrocite
magnetically orders below 77-K (Murad and Cashion,
2004), the products normally expected under such experi-
mental conditions. Further work is needed to identify this
product more precisely.

3.2. Kinetics of phosphate sorption and isotopic fractionation

3.2.1. 21 �C

The rate of phosphate uptake by ferrihydrite and associ-
ated PO4 O-isotope fractionations at room temperature are
shown in Fig. 2. This result shows that the initial uptake of
phosphate is rapid with about 25% of the equilibrium
sorbed phosphate concentration reached within 1 min of
reaction. The uptake of phosphate then increased steadily
to reach equilibrium at about 20 h, with slow sorption
kinetics observed at longer times. Such slow sorption
following initially rapid uptake of phosphate has been
observed previously (e.g., Berner, 1973; Torrent and
Barron, 2000) and interpreted as sorption to micro-pores
or grooves and within aggregates (Willett et al., 1988;
Strauss et al., 1997). Since the extent of slow kinetics

depends on the crystallinity of minerals (Strauss et al.,
1997), this effect is expected to be more pronounced in
low crystalline ferrihydrite. The pH of the system increased
significantly at early phases of sorption, likely as a result
of dehydroxylation of –OH groups (Lijklema, 1980).

The O-isotope fractionation during phosphate sorption
shows that P16O4 phosphate is initially sorbed preferentially
to ferrihydrite. The maximum fractionation (�2.3&) was
observed in the first minute of sorption. This fractionation
then gradually decreased, as a result of the continual con-
comitant exchange between aqueous and sorbed phases of
phosphates. For example, the fractionation decreased to
about �0.6& in 70 h and remained fairly constant for the
duration of the experiment.

Another set of experiments was performed at room tem-
perature using isotopically heavy dissolved phosphate (d18O
of PO4 = 33.9&) (Table 1) in order to understand the effect
of initial oxygen isotopic composition of phosphate on the
fractionation between aqueous and adsorbed phosphate
phases. Results of this experiment also showed a similar ex-
tent of initial fractionation (�2.5&) as in the experiment
with light phosphate (d18O of PO4 = 12.7&). This fraction-
ation gradually decreased with time and became �0.5& at
the end of the experiment. These small differences in D val-
ues measured at the end of these two labeled-phosphate
experiments are within limits of analytical error. These re-
sults suggest that, irrespective of the original isotopic com-
position of oxygen in phosphates, the extent and kinetics of
the isotopic fractionation between sorbed and aqueous-
phase phosphate are the same at a given temperature.

3.2.2. 70 �C

Both the partitioning and isotopic fractionation between
sorbed and aqueous phosphate in experiments performed at
70 �C were very similar to that at 21 �C. The minor
difference, however, was a slightly higher extent of initial
fractionation (�2.9&) and faster decrease of this fraction-
ation to �0.5& (within <50 h; Fig. 3), than that of experi-
ments performed at lower temperatures. The nature of
fractionation was very similar for both isotopically-light
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Fig. 2. (a) Partitioning of PO4 as a function of time during its sorption to ferrihydrite at 24 �C. Experiments were performed in 78 mmol/L of
PO4 at 10 g/L ferrihydrite concentration in artificial sea water composition at pH 8.2 (±0.2), (b) fractionation of oxygen isotopes of sorbed
and aqueous phosphate. The d18O of starting PO4 (12.7&) is shown by solid arrow.
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and heavy phosphates (i.e., initial d18O of aqueous-phase
PO4 of 12.7& and 33.9&)

3.2.3. 95 �C

Results of phosphate sorption experiments conducted at
95 �C are shown in Fig. 4a. As in other low-temperature

experiments, phosphate sorption is rapid, but the isotherm
shows three sorption regimes at 95 �C: (a) an initial rapid
rate of sorption (0 to �20 min) followed by, (b) a relatively
slow rate of sorption (�20 min –20 h), and finally, (c) a
gradual increase until equilibrium sorption is reached at
�200 h of reaction. It is apparent that micro-pores and
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Fig. 3. (a) Partitioning of PO4 as a function of time during its sorption to ferrihydrite at 70 �C. Experiments were performed in 3.1 mmol/L of
PO4 at 1 g/L ferrihydrite concentration in artificial sea water composition at pH 8.2 (±0.2), (b) fractionation of oxygen isotope of sorbed and
aqueous phosphate. The d18O of starting PO4 (33.9&) is shown by solid arrow.
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Fig. 4. (a) Partitioning of PO4 as a function of time during its sorption to ferrihydrite at 95 �C. Experiments were performed in 78 mmol/L of
PO4 at 10 g/L ferrihydrite concentration in artificial sea water composition at pH 8.2 (±0.2), (b) fractionation of oxygen isotope of sorbed and
aqueous-phase phosphate. The x-axis is drawn both in logarithmic and arithmetic scale to illustrate the fractionation during early sorption
and mineral transformation. The d18O of starting PO4 (12.7&) is shown by solid arrow.
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intra-aggregate voids in ferrihydrite contribute significantly
to the observed slow sorption kinetics. Interestingly, after
200 h of reaction, the amount of sorbed phosphate
decreased sharply suggesting the release of pre-sorbed phos-
phate. The amount of release was �60% at about 4200 h of
incubation. Phosphate desorption occurs during the transi-
tion of ferrihydrite into more crystalline mineral phase/s
as evidenced from XRD, Mössbauer spectroscopy and
SEM image analyses. This is because mineral transforma-
tion of nanometer-sized ferrihydrite with high surface area
to a more crystalline mineral phase/s requires the release
of previously sorbed phosphate into solution. Therefore,
this desorption after �1000 h reaction was related to the
changes in sorption sites as a result of mineral conversion,
including other possible effects such as different mechanisms
of PO4 sorption to newly formed minerals (see Section 4).

As in lower temperature experiments, the fractionation
of oxygen isotopes was observed only in the earliest phase
of sorption. A key observation in the 95 �C experiment
was the occurrence of O-isotope exchange between phos-
phate and water (promoted by temperature >80 �C) during
the phosphate desorption process. This result is consistent
with previous observations of exchange of oxygen isotopes
between water and dissolved phosphate at temperatures
P80 �C on laboratory timescales (Tudge, 1960; Lecuyer
et al., 1999; O’Neil et al., 2003). Furthermore, mineral
transformation was readily observed at this temperature
which gave an opportunity to characterize phosphate–min-
eral interactions during this transformation. Our results
show that the progressive transformation of ferrihydrite
to other more stable minerals results in the preferential
desorption of PO4 enriched in the lighter isotope, 16O. Fur-
ther transformations to even more crystalline Fe-oxides
such as hematite would be expected to result in similar re-
sults, which are described more fully in Section 4. This pref-
erential desorption and fractionation begins at the onset of
mineral transformation and persists, perhaps until complete
mineral transformation. However, it is important to note
that the difference in the isotopic composition between

aqueous and sorbed phosphate phases becomes gradually
smaller and finally negligible within error.

To detect the occurrence of phosphate–water oxygen
isotope exchange, the d18O values of water in experimental
systems was also measured periodically at all experimental
temperatures. The oxygen isotope compositions of 18O-
labeled waters remained nearly constant over the course
of all experiments performed at 670 �C, indicating insignif-
icant oxygen isotope exchange between (PO4)aq and H2O.
Extrapolation of phosphate–water exchange rates mea-
sured by O’Neil et al. (2003) to 95 �C gives the equilibrium
fractionation between phosphate and water at 95 �C and
pH 8.1 (±0.2) as about 9&. This means that the original
D (d18OPO4 � d18OH2O = 18.2&) was �9.2& away from
equilibrium. Therefore the observed decrease in the d18O
value of phosphate by 1.1& (Fig. 4) at the end of the
experiment is justifiable.

It must be emphasized that the bulk phosphate isotopic
composition cannot resolve specific interactions such as
separate interactions of phosphate with ferrihydrite and
newly forming minerals during desorption, or sorption pro-
cesses occurring during progressive mineral transformation.
It is clear from these data, however, that the cumulative iso-
tope effect of this transformation is the initial preferential
desorption of P16O4. Overall, the extent of fractionation
and re-equilibration during the transformation is similar
to that during sorption of phosphate to clean ferrihydrite
surfaces. Therefore the final phases of both sorbed and
aqueous-phase phosphate has similar isotopic composition.

3.2.4. 4 �C

Partitioning of phosphate between aqueous and solid
phases during sorption to ferrihydrite at 4 �C as a function
of time is shown in Fig. 5a. This result shows that the initial
uptake of phosphate is slow relative to higher temperature
experiments. Similarly, the slow sorption kinetics observed
in high-temperature experiments is not as pronounced
at 4 �C. The extent and rate of O-isotopic fractionation
between sorbed and aqueous-phase phosphate during
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Fig. 5. (a) Partitioning of PO4 as a function of time during its sorption to ferrihydrite at 4 �C. Experiments were performed in 78 mmol/L of
PO4 at 10 g/L ferrihydrite concentration in artificial sea water composition at pH 8.2 (±0.2), (b) fractionation of oxygen isotope of sorbed and
aqueous phosphate. The d18O of starting PO4 (12.7&) is shown by solid arrow.
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uptake by ferrihydrite (Fig. 5b) show that fractionation oc-
curred only at the early phase of sorption with lighter phos-
phate, P16O4, enriched preferentially in the sorbed phase, as
was observed at all other temperatures studied. Consistent
with high-temperature experiments, this fractionation grad-
ually decreased over time, but at a slower rate. The D value
at the end of the experiment (i.e., 10,800 h or 15 months)
was �1.4&. However, the isotopic composition of sorbed
phosphate, calculated from isotope mass balance, would
be higher than the measured value. In this case, the D value
will be lower than �1.4&. A key attribute at this tempera-
ture (compared to higher temperatures) is that the rate of
phosphate exchange between the sorbed and aqueous-phase
phosphate is much slower than that at higher temperatures,
and did not reach equilibrium within 15 months of
incubation.

3.2.5. Fractionation of phosphate at low phosphate

concentrations

Experiments performed in 20 L HDPE carboys at low
iron oxide and phosphate concentrations (with 3–11
lmol/L aqueous phosphate) simulating ocean water envi-
ronments also show that isotopic fractionation between
sorbed and aqueous phosphate occurs only during the very
early phase of rapid sorption (Fig. 6). The measured D
(d18Osrb � d18Oaq) value was about �2& within 2 h of mix-
ing and this value decreased continuously with the progress
of reaction and became ��1.0& in 2660 h. The overall
trend of isotopic fractionation is similar to room tempera-
ture experiments performed at high phosphate concentra-
tion, but took longer to re-equilibrate after the early
phase of kinetic isotopic fractionation.

4. DISCUSSION

4.1. Kinetics of mineral transformation and its effect on

partitioning of phosphate

Ferrihydrite is a metastable mineral and converts to
other more stable minerals. The rate of this transformation
depends on solution chemistry, temperature, pH and the

nature of sorbed complexes among other factors (Cornell
and Schwertmann, 2003). However, the sorption of phos-
phate, like other oxyanions, increases the entropic compo-
nent of free energy of activation (Shaw et al., 2005) and,
therefore hinders ferrihydrite dissolution (Biber et al.,
1994) and mineral transformation. Since the P/Fe molar ra-
tio in our first series of experiments (�0.7) was much higher
than the minimum required for effective inhibition (>0.015,
Galvez et al., 1999), extensive inhibition of mineral trans-
formation was expected. In fact, the rate of mineral trans-
formation in our study decreased by more than two
orders of magnitude compared with phosphate-free systems
(Shaw et al., 2005). Although phosphate is released con-
comitant with ferrihydrite dissolution (Fig. 4), it sorbs
again to the newly-precipitating minerals. This sorption to
new mineral may again inhibit crystal growth because of
the sorption of phosphate onto reactive surface sites. Our
results clearly show the presence of these simultaneously
occurring reactions (Fig. 4).

Mineral transformation at 95 �C also affected the parti-
tioning of phosphate. For example, aqueous-phase phos-
phate steadily increased as a result of this transformation
(Fig. 4). This increase is consistent with the changes in sur-
face area as a result of mineral transformation. As shown in
SEM images (Inset in Fig. 1), the large surface area of fer-
rihydrite (ca. 790 m2/g; Borch et al., 2007) decreases by
more than an order of magnitude when it converts to more
stable mineral phases (such as Jaisi et al., 2009). This de-
crease in surface area requires the release of pre-sorbed
phosphate. Therefore, the sorbed phosphate is released dur-
ing ferrihydrite dissolution and re-sorbed to newly precipi-
tated minerals, apart from its partial consumption to form
new phosphate minerals.

4.2. Isotopic effects of phosphate sorption

Experiments performed at different concentrations of
ferrihydrite and phosphate with different isotopically-la-
beled oxygen showed a strong kinetic fractionation between
sorbed and aqueous-phase phosphates during the early
phase of sorption. Nearly constant steady state isotopic
fractionation (D = ��2.2& to �2.5&) in the early stage
of phosphate sorption in all experiments, irrespective of
temperature and initial isotopic composition of phosphate,
suggests negligible temperature-dependence on isotopic
fractionation. However, this fractionation continuously de-
creased with time due to isotopic exchange between aque-
ous and sorbed-phase phosphates and became almost
negligible with sufficient equilibration/exchange time. This
type of kinetic fractionation during the early sorption phase
has been found in several metal isotopes such as Fe, Zn, Mo
and Tl (Rehkämper et al., 2002; Siebert et al., 2003; John-
son et al., 2005; Juillot et al., 2008). For many cation species
such as Fe2+, Zn2+ and Tl3+, heavy isotopes are preferen-
tially sorbed to mineral or sediment surfaces. But for anio-
nic species such as MoO2

4� and PO4
3�, light isotopes are

preferentially sorbed to mineral/sediment surfaces (Siebert
et al., 2003). Other oxyanions such as selenite and sulfate
also show similar results as that of phosphate but the
fractionation is very small (within 0.5&, van Stempvoort
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et al., 1990; Johnson et al., 2000). This difference in selective
fractionation between anion and cationic species is proba-
bly related to the element in question (O atom or metal
ions) making bonds to the mineral/sediment surfaces.

Partitioning of phosphate is pH dependant and the de-
gree of its protonation increases with decreasing pH. It
has been found that the equilibrium 18O/16O ratios in aque-
ous phosphate increase with increasing degree of proton-
ation of phosphate partly due to the relative magnitudes
of the dissociation constants of the protonated species
(O’Neil et al., 2003). Since the experimental pH was contin-
uously monitored and maintained at pH 8.2 (±0.2) in our
experiments, phosphate species should be dominantly
HPO4

2� (O’Neil et al., 2003). Therefore, the observed frac-
tionation is not a result of phosphate speciation. These find-
ings are consistent with the preferential removal of P16O4

from the aqueous phosphate phase during initial precipita-
tion of apatite (Liang and Blake, 2007).

Our study shows that the fractionation of oxygen isotopes
is strictly a function of time during sorption of phosphate and
during mineral transformation. However, the maximum ini-
tial kinetic isotopic fractionation measured in this study is
higher than that during apatite precipitation (Liang and
Blake, 2007). Although the relationship between fraction-
ation associated with sorption and co-precipitation is not
yet known, a likely explanation for the higher fractionation
observed during sorption in our experiments is that our
experiments had higher temporal resolution of reaction
kinetics and because the highest fractionation occurs during
the first moments of the experiment when sorption begins.

The final D (�1.3&) between solid and aqueous-phase
phosphate in low-temperature experiments (at 4 �C), typical
of ocean bottom settings, was larger than that in high-tem-
perature experiments (i.e., D = ��0.5&). From the ob-
served trend in our study, it is expected that this
difference will gradually decrease over time and will proba-
bly become close to that measured in higher temperature
experiments. This, in fact, is consistent with measurements
of d18OP from modern seafloor hydrothermal iron oxides,
and ambient sea water DIP (Colman et al., 2005). For
example, d18OP value of phosphate sorbed to abiotic iron
oxides formed from oxidation of black smoker plume par-
ticles at 9 �N East Pacific Rise (EPR) is 24.3 (±0.4)& and
dissolved phosphate in ambient Pacific sea water is 24.1
(±0.5)&. This key result suggests that prolonged exposure
of iron oxides to dissolved phosphate (i.e., DIP in ambient
sea water) and sufficient exchange of aqueous and sorbed
phosphate in low-temperature (�2–4 �C) ocean bottom
environments, results in no isotopic fractionation between
the two phosphate phases. Therefore, irrespective of phases,
both sorbed (to iron oxides) or aqueous (DIP), phosphates
record the temperature information of ambient sea water. If
the isotopic signature of iron oxide bound phosphates is
preserved over time, then phosphate retained in iron oxides
can be used to interpret ancient ocean environments.

4.3. Isotopic fractionation during mineral transformation

Oxygen isotope compositions of sorbed and aqueous
phosphate during mineral transformation in 95 �C experi-

ments revealed an apparent isotopic fractionation indicat-
ing that P16O4 is preferentially desorbed. Transformation
of ferrihydrite is primarily a dissolution–precipitation reac-
tion (Schwertmann and Murad, 1983; Cornell and Schwert-
mann, 2003). If ferrihydrite transformation in our
experiments followed this pathway, then measured isotopic
results should reflect the cumulative effects of isotopic frac-
tionation during ferrihydrite dissolution and formation of
new minerals. Because this conversion is not a single time
event, the isotopic fractionation is expected to continue to
change over time. Interestingly, the maximum isotopic frac-
tionation (�2.4&) observed during this process is equal to
that which occurred during the initial stages of phosphate
sorption to ferrihydrite. The major difference, however, is
that the isotopic fractionation persisted for longer times
(more than 2000 h) during mineral transformation com-
pared to a very limited time (<100 h) required during initial
sorption of phosphate to ferrihydrite. It is implied from this
result that the dissolution likely initiated with ferrihydrite
crystallites containing isotopically-light sorbed phosphate.
In fact, light phosphate is required to be released from sorp-
tion sites so that heavy phosphate concentrates in residual
ferrihydrite. Although congruent dissolution of goethite
and hematite does not involve iron isotopic fractionation
(Skulan et al., 2002; Brantley et al., 2004), it is likely that
ferrihydrite dissolution, in our case, is incongruent as a re-
sult of surface coverage with isotopically variable phos-
phate, if not selective sorption to different reactive sites of
ferrihydrite. Under this condition, as a result of desorption,
aqueous-phase phosphate becomes lighter than sorbed
phosphate, consistent with our experimental results
(Fig. 4). It is intuitive to expect that light isotopes are pref-
erentially sorbed to newly formed minerals, but the desorp-
tion process should have dominated the overall signal due
to the limited number of sorption sites in new more stable
minerals compared with ferrihydrite.

4.4. Mechanism of phosphate sorption

An important phenomenon observed in this study is the
nature of specific phosphate interaction with ferrihydrite
and transformed minerals during sorption and desorption
processes. Inner sphere complexation of phosphate to fer-
rihydrite (Sigg and Stumm, 1981) requires displacement of
structural oxygen in oxides. In complexation reactions,
either an oxygen atom from ferrihydrite or from phosphate
is required to be displaced and released to solution (as in-
tact PO4 groups). Similarly, during dissolution of ferrihy-
drite, phosphate groups are also concurrently released to
solution. Resorption of phosphate to new mineral/s repeats
the above process. Similarly, the exchange of oxygen be-
tween iron oxide and water is rapid while fractionation of
oxygen isotopes between water and different iron oxides is
small (1000 ln a varies from �3.8& to +2.5&, Bao and
Koch, 1999). Therefore, any changes in the oxygen isotope
composition of ferrihydrite are reflected by corresponding
changes in the d18O value of water especially at high fer-
rihydrite:water ratio experiments. This means that if O-iso-
tope exchange (involving breaking and reformation of P–O
bonds) between oxygen atoms in phosphate and O atoms in
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iron oxides occurred during any of the sorption, desorption
and mineral transformation processes, then the d18O value
of phosphate should move toward the water or Fe-oxide
value. Our experimental results for all temperatures and
conditions showed that the isotopic composition of water
remained constant and unchanged from the starting d18O
value (�5.5&).

On the other hand, corresponding oxygen isotope com-
positions of iron oxides and water would increase toward
phosphate d18O values. Although the isotopic composition
of water is not expected to change to a measurable extent
because of high water:phosphate ratios (with molar ratio
of O in PO4:H2O = 185.9) used in our experiments, our re-
sults consistently show that the isotopic composition of
phosphate did not shift (to became close to that of water).
This result, therefore, suggests that P–O bonds do not
break during the sorption/desorption process, but rather
the entire PO4 units (irrespective of 18O or 16O or the differ-
ent combinations of 18O and 16O in PO4) are sorbed or
kicked off intact. This suggests that the ligand exchange is
compensated by oxygen atoms entirely from ferrihydrite
or from water. This results is quite different from sorption
of other oxyanions to iron oxides such as selenite (Saeki
and Matsumoto, 1998) where ligand exchange during sorp-
tion of selenite to geothite was found to release 6–40% of
oxygen atoms from surface hydroxyl groups in geothite into
the solution. Selenite has been considered as a phosphate
analogue with respect to chemical interactions and identical
mechanisms of sorption to iron oxides has been invoked
(Manceau and Charlet, 1994). Our results, therefore, fur-
ther support previous observations that the oxygen bond
to phosphate in PO4 is robust and does not undergo isoto-
pic exchange during these low-temperature reactions and
processes.

5. CONCLUSIONS AND IMPLICATIONS

Several experiments performed at different solid-solution
ratios and concentrations and oxygen isotopic compositions
of phosphate between 4 and 95 �C, consistently showed tem-
perature-independent fractionation between sorbed and
aqueous phosphate at initial stages of non-equilibrium sorp-
tion. However, there was sufficient isotopic exchange be-
tween aqueous and sorbed phases of phosphate such that
end products had similar isotopic compositions with small
(1.4&) to negligible (0.2&) apparent fractionation between
aqueous and sorbed phosphate phases. This isotopic ex-
change is also present during mineral transformation.
Therefore it is expected that progressive transformation of
ferrihydrite into more stable minerals such as hematite could
still result in similar isotopic compositions of both sorbed
and aqueous-phase phosphate. Therefore, d18O values of
dissolved phosphate in sea water may be preserved during
their sorption to iron-oxide minerals such as hydrothermal
plume particles, making marine iron oxides an important
potential new proxy for dissolved phosphate in the oceans.
This is an important and significant finding for the interpre-
tation of oxygen isotope ratios of phosphate from biotic as
well as abiotic systems (e.g., hydrothermal plumes), and in
paleoenvironmental/paleotemperature studies.
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Mössbauer-spectroscopy. Nucl. Instr. Meth. B 58, 85–97.

Rehkämper M., Frank M., Hein J. R., Porcelli D., Halliday A.,
Ingri J. and Liebetrau V. (2002) Thallium isotope variations in
seawater and hydrogenetic, diagenetic and hydrothermal ferro-
manganese deposits. Earth Planet Sci. Lett. 197, 65–81.

Saeki K. and Matsumoto S. (1998) Mechanisms of ligand exchange
reactions involving selenite sorption on goethite labeled with
oxygen-stable isotope. Comm. Soil Sci. Plant Anal. 29, 3061–

3072.

Shaw S., Pepper S. E., Bryan N. D. and Livens F. R. (2005) The
kinetics and mechanisms of the transformation of 2-line
ferrihydrite to goethite and hematite under alkaline conditions,
and in the presence of phosphate. Am. Mineral. 90, 1852–1860.

Siebert C., Nagler T. F., von Blanckenburg V. and Kramers J. D.
(2003) Molybdenum isotope records as a potential new proxy
for paleoceanography. Earth Planet. Sci. Lett. 211, 159–171.

Sigg L. and Stumm W. (1981) The interaction of anions and weak
acids with the hydrous goethite (a-FeOOH) surface. Colloid

Surf. A 2, 101–117.

Skulan J. L., Beard B. L. and Johnson C. M. (2002) Kinetic and
equilibrium Fe isotope fractionation between aqueous Fe(III)
and hematite. Geochim. Cosmochim. Acta 66, 2995–3015.

Strauss R., Brummer G. W. and Barrow N. J. (1997) Effects of
crystallinity of goethite. 2. Rates of sorption and desorption of
phosphate. Eur. J. Soil Sci. 48, 101–114.

Schwertmann U. and Murad E. (1983) Effect of pH on the
formation of goethite and hematite from ferrihydrite. Clays

Clay Miner. 4, 277–284.

Slomp C. P., Malschaert J. P. and Van Raaphorst W. (1998) The
role of adsorption in sediment-water exchange of phosphate in
North Sea continental margin sediments. Limnol. Oceanogr. 43,

832–846.

Thibault P. J., Rancourt D. G., Evans R. J. and Dutrizac J. E.
(2009) Mineralogical conformation of a near-P:Fe = 1:2 limit-
ing stoichiometric ratio in colloidal P-bearing ferrihydrite-like
hydrous ferric oxide. Geochim. Cosmochim. Acta 73, 364–376.

Torrent J. and Barron V. (2000) Key role of phosphorus in the
formation of the iron oxides in Mars soils? ICARUS 145, 645–

647.

Tudge A. P. (1960) A method of analysis of oxygen isotopes in
orthophosphate and its use in measurement of paleotempera-
tures. Geochim. Cosmochim. Acta 18, 81–93.

Van Stempvoort D. R., Reardon E. J. and Fritz P. (1990)
Fractionation of sulfur and oxygen isotopes in sulfate by soil
sorption. Geochim. Cosmochim. Acta 54, 2817–2826.

Vennemann T. W., Fricke H. C., Blake R. E., O’Neil J. R. and
Colman A. (2002) Oxygen isotope analysis of phosphates: a
comparison of techniques for analysis of Ag3PO4. Chem. Geol.

185, 321–336.

Wheat C. G., Feely R. A. and Motl M. J. (1996) Phosphate
removal by oceanic hydrothermal process: an update of the
phosphorous budget in the oceans. Geochim. Cosmochim. Acta

60, 3593–3608.

Willett I. R., Chartres C. J. and Nguyen T. T. (1988) Migration of
phosphate into aggregated particles of ferrihydrite. J. Soil Sci.

39, 275–282.

Associate editor: Timothy W. Lyons

Isotopic fractionation during sorption and desorption 1319


	Fractionation of oxygen isotopes in phosphate during its interactions with iron oxides
	

	Fractionation of oxygen isotopes in phosphate during  its interactions with iron oxides
	Introduction
	Materials and methods
	Synthesis and purification of ferrihydrite
	Phosphate sorption experiments
	Methods of aqueous and sorbed phosphate O-isotope analysis
	XRD
	57Fe Mössbauer Fe-Mössbauer spectroscopy

	Results
	Properties of ferrihydrite and its transformation products
	Kinetics of phosphate sorption and isotopic fractionation
	21°C21°C
	70°C70°C
	95°C95°C
	4°C4°C
	Fractionation of phosphate at low phosphate concentrations


	Discussion
	Kinetics of mineral transformation and its effect on partitioning of phosphate
	Isotopic effects of phosphate sorption
	Isotopic fractionation during mineral transformation
	Mechanism of phosphate sorption

	Conclusions and implications
	Acknowledgements
	References


	Text6:     This article is a U.S. government work, and is not subject to copyright in the United States.


